Advertisement

Mobile Robot Platform to track User Movement and Behaviour

  • Melvin Isken
  • Bjoern Borgmann
  • Andreas Hein
Part of the Communications in Computer and Information Science book series (CCIS, volume 386)

Abstract

This document describes a currently developed robotic system that tracks and analyses human gait parameters. This system is used to conduct mobility assessments to track the user’s health status. Mobility assessments conducted by a mobile robot provide significant advantages over current methodologies. Additionally, the robot navigation capabilities can be enhanced by the use of mobility assessment data. Parts of the overall concept are evaluated by the evAAL competition 2013, Track 1, Indoor Localization and Tracking.

Keywords

mobile robot mobility assessment laser range finder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Committee on Quality of Health Care in America, Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st Century, 1st edn. National Academies Press (2001)Google Scholar
  2. 2.
    European Commission Research: Seventh Framework - Work Programme 2011-2012, ICT (2010)Google Scholar
  3. 3.
    Frenken, T., Gövercin, M., Mersmann, S., Hein, A.: Precise Assessment of Self-Selected Gait Velocity in Domestic Environments. In: Pervasive Computing Technologies for Healthcare, PervasiveHealth (2010)Google Scholar
  4. 4.
    Butler, A.A., Menant, J.C., Tiedemann, A.C., Lord, S.R.: Age and gender differences in seven tests of functional mobility. Journal of NeuroEngineering and Rehabilitation 6, 31 (2009)CrossRefGoogle Scholar
  5. 5.
    Alzheimer’s Disease International: Alzheimer’s Disease International: World Alzheimer Report 2009. Online (2009)Google Scholar
  6. 6.
    Beauchet, O., Allali, G., Berrut, G., Hommet, C., Dubost, V., Assal, F.: Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatric Disease and Treatment 4(1), 155–160 (2008)CrossRefGoogle Scholar
  7. 7.
    Scanaill, C.N., Carew, S., Barralon, P., Noury, N., Lyons, D., Lyons, G.M.: A review of approaches to mobility telemonitoring of the elderly in their living environment. Annals of Biomedical Engineering 34(4), 547–563 (2006)CrossRefGoogle Scholar
  8. 8.
    Cameron, K., Hughes, K., Doughty, K.: Reducing fall incidence in community elders by telecare using predictive systems. In: Proc. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 1036–1039 (1997)Google Scholar
  9. 9.
    Kaye, J.A., Maxwell, S.A., Mattek, N., Hayes, T.L., Dodge, H., Pavel, M., Jimison, H.B., Wild, K., Boise, L., Zitzelberger, T.A.: Intelligent Systems for Assessing Aging Changes: home-based, unobtrusive, and continuous assessment of aging. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences 66(supp. 1), i180–i190 (2011)Google Scholar
  10. 10.
    Pallejà, T., Teixidó, M., Tresanchez, M., Palacín, J.: Measuring Gait Using a Ground Laser Range Sensor. Sensors 9(11), 9133–9146 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhou, H., Hu, H.: Human motion tracking for rehabilitation: A survey. Biomedical Signal Processing and Control 3(1), 1–18 (2008)CrossRefGoogle Scholar
  12. 12.
    Bachmann, C., Gerber, H., Stacoff, A.: Messsysteme, Messmethoden und Beispiele zur instrumentierten Ganganalyse. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 56(2), 29–34 (2008)Google Scholar
  13. 13.
    Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture 18(2), 1–10 (2003)CrossRefGoogle Scholar
  14. 14.
    Aminian, K., Najafi, B., Böla, C., Leyvraz, P.F., Robert, P.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics 35(5), 689–699 (2002)CrossRefGoogle Scholar
  15. 15.
    Liu, J., Lockhart, T.E., Jones, M., Martin, T.: Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants. IEEE Transactions on Automation Science and Engineering 5(4), 696–702 (2008)CrossRefGoogle Scholar
  16. 16.
    Frenken, T., Brell, M., Gövercin, M., Wegel, S., Hein, A.: aTUG: technical apparatus for gait and balance analysis within component-based Timed Up & Go using mutual ambient sensors. Journal of Ambient Intelligence and Humanized Computing (July 2012)Google Scholar
  17. 17.
    Van der Loos, H.F.M., Hammel, J., Leifer, L.J.: DeVAR transfer from R&D to vocational and educational settings. In: Proc. Fourth International Conference on Rehabilitation Robotics, pp. 151–156 (1994)Google Scholar
  18. 18.
    Matsumoto, Y., Ino, T., Ogasawara, T.: Development of intelligent wheelchair system with face and gaze based interface. In: Proceedings of 10th IEEE Int. Workshop on Robot and Human Communication (ROMAN 2001), pp. 262–267 (2001)Google Scholar
  19. 19.
    Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz, C., Högele, M., Verl, A.: Care-O-bot 3 - Creating a product vision for service robot applications by integrating design and technology. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1992–1997 (2009)Google Scholar
  20. 20.
    Cesta, A., Cortellessa, G., Giuliani, M.V., Pecora, F., Scopelliti, M., Tiberio, L.: Psychological implications of domestic assistive technology for the elderly. PsychNology Journal 5, 229–252 (2007)Google Scholar
  21. 21.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software, vol. 3 (2009)Google Scholar
  22. 22.
    Frenken, T., Isken, M., Volkening, N., Brell, M., Hein, A.: Criteria for Quality and Safety while Performing Unobtrusive Domestic Mobility Assessments using Mobile Service Robots. In: Wichert, R., Eberhardt, B. (eds.) Ambient Assisted Living. Advanced Technologies and Societal Change, pp. 61–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Melvin Isken
    • 1
  • Bjoern Borgmann
    • 1
  • Andreas Hein
    • 1
  1. 1.OFFIS e.V.OldenburgGermany

Personalised recommendations