Enhancements to the LOCOSmotion Person Tracking System

  • Ngewi Fet
  • Marcus Handte
  • Stephan Wagner
  • Pedro José Marrón
Part of the Communications in Computer and Information Science book series (CCIS, volume 386)

Abstract

Indoor localization is a key component in context-aware applications and assisted-living technologies. In prior work, we presented the design and implementation of the LOCOSmotion indoor person tracking system that uses Wireless LAN fingerprinting and accelerometer-based dead-reckoning [5]. In this paper, we analyze the optimization potentials of the previous implementation LOCOSmotion and propose modifications and enhancements which address them. In particular, we focus on reducing the time and cost of deployment, as well as on a number of refinements to improve the localization precision. Aside from optimization of the calibration tools and underlying localization algorithms, the refinements also encompass the use of feedback provided by the domestic robotics (domotics) in the Living Lab to improve the overall system performance.

Keywords

Localization Tracking Pervasive Computing LOCOS- motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akeila, E., Salcic, Z., Swain, A., Croft, A., Stott, J.: Bluetooth-based Indoor Positioning with Fuzzy based Dynamic Calibration. In: TENCON 2010 - 2010 IEEE Region 10 Conference, pp. 1415–1420 (November 2010)Google Scholar
  2. 2.
    Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: IEEE Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  3. 3.
    Baniukevic, A., Sabonis, D., Jensen, C.S., Lu, H.: Improving Wi-Fi Based Indoor Positioning Using Bluetooth Add-Ons. In: 2011 IEEE 12th International Conference on Mobile Data Management, pp. 246–255 (June 2011)Google Scholar
  4. 4.
    Barsocchi, P., Lenzi, S., Chessa, S., Furfari, F.: Automatic virtual calibration of range-based indoor localization systems. Wireless Communications and Mobile Computing (12), 1546–1557 (2012)Google Scholar
  5. 5.
    Fet, N., Handte, M., Wagner, S., Marrón, P.J.: LOCOSmotion: An acceleration-assisted person tracking system based on wireless LAN. In: Chessa, S., Knauth, S. (eds.) EvAAL 2012. CCIS, vol. 362, pp. 17–31. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Focken, D., Stiefelhagen, R.: Towards vision-based 3-D people tracking in a smart room. In: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, pp. 400–405 (2002)Google Scholar
  7. 7.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials 11(1), 13–32 (2009)CrossRefGoogle Scholar
  8. 8.
    Handte, M., Iqbal, U., Apolinarski, W., Wagner, S., Marrón, P.J.: The narf architecture for generic personal context recognition. In: 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), pp. 123–130 (June 2010)Google Scholar
  9. 9.
    Haverinen, J., Kemppainen, A.: A Global Self-localization Technique Utilizing Local Anomalies of the Ambient Magnetic Field. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3142–3147 (May 2009)Google Scholar
  10. 10.
    Hightower, J., Want, R., Borriello, G.: SpotON: An indoor 3D location sensing technology based on RF signal strength. UW CSE 00-02-02, University of Washington (2000)Google Scholar
  11. 11.
    Ingram, S.J., Harmer, D., Quinlan, M.: Ultrawideband indoor positioning systems and their use in emergencies. In: Position Location and Navigation Symposium, PLANS 2004, pp. 706–715 (2004)Google Scholar
  12. 12.
    Ji, Y., Biaz, S., Pandey, S., Agrawal, P.: Ariadne: A dynamic indoor signal map construction and localization system. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, MobiSys 2006, pp. 151–164. ACM, New York (2006)CrossRefGoogle Scholar
  13. 13.
    Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas in Communications 24(2), 381–394 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lim, H., Kung, L.-C., Hou, J.C., Luo, H.: Zero-configuration indoor localization over ieee 802.11 wireless infrastructure. Wireless Networks 16(2), 405–420 (2010)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  16. 16.
    Neumann, P.: A system for inertia-based distance estimation using mobile phones. University of Duisburg-Essen, Bachelor Thesis (July 2012)Google Scholar
  17. 17.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: Indoor location sensing using active rfid. Wireless Networks 10, 701–710 (2004), doi:10.1023/B:WINE.0000044029.06344.ddCrossRefGoogle Scholar
  18. 18.
    Velayos, H., Karlsson, G.: Techniques to reduce the ieee 802.11b handoff time. In: 2004 IEEE International Conference on Communications, vol. 7, pp. 3844–3848 (2004)Google Scholar
  19. 19.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The Active Badge Location System. ACM Transactions on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  20. 20.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)CrossRefGoogle Scholar
  21. 21.
    Weinberg, H.: Using the adxl202 in pedometer and personal navigation applications. iMEMS Technologies/Applications, Analog Devices (1995)Google Scholar
  22. 22.
    Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.: A wireless lan-based indoor positioning technology. IBM Journal of Research and Development 48(5.6), 617–626 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ngewi Fet
    • 1
  • Marcus Handte
    • 1
  • Stephan Wagner
    • 1
  • Pedro José Marrón
    • 1
  1. 1.Networked Embedded Systems GroupUniversity of Duisburg-Essen and Locoslab GmbHGermany

Personalised recommendations