Activity Recognition System Using Non-intrusive Devices through a Complementary Technique Based on Discrete Methods

  • Miguel Ángel Álvarez de la Concepción
  • Luis Miguel Soria Morillo
  • Luis González Abril
  • Juan Antonio Ortega Ramírez
Part of the Communications in Computer and Information Science book series (CCIS, volume 386)


This paper aims to develop a cheap, comfortable and, specially, efficient system which controls the physical activity carried out by the user. For this purpose an extended approach to physical activity recognition is presented, based on the use of discrete variables which employ data from accelerometer sensors. To this end, an innovative selection, discretization and classification technique to make the recognition process in an efficient way and at low energy cost, is presented in this work based on Ameva discretization. Entire process is executed on the smartphone and on a wireless health monitoring system is used when the smartphone is not used taking into account the system energy consumption.


Contextual Information Discretization Method Mobile Environment Qualitative Systems Smart-Energy Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 1541. AAAI Press, MIT Press, Menlo Park, Cambridge (2005)Google Scholar
  2. 2.
    Hong, Y., Kim, I., Ahn, S., Kim, H.: Activity recognition using wearable sensors for elder care. In: Second International Conference on Future Generation Communication and Networking, vol. 2, pp. 302–305. IEEE (2008)Google Scholar
  3. 3.
    Brezmes, T., Gorricho, J.-L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 796–799. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Lepri, B., Mana, N., Cappelletti, A., Pianesi, F., Zancanaro, M.: What is happening now? Detection of activities of daily living from simple visual features. Personal and Ubiquitous Computing 14(8), 749–766 (2010)CrossRefGoogle Scholar
  5. 5.
    Bicocchi, N., Mamei, M., Zambonelli, F.: Detecting activities from body-worn accelerometers via instance-based algorithms. Pervasive and Mobile Computing 6(4), 482–495 (2010)CrossRefGoogle Scholar
  6. 6.
    Paoli, R., Fernández-Luque, F., Zapata, J.: A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Systems with Applications (2011)Google Scholar
  7. 7.
    Kwapisz, J., Weiss, G., Moore, S.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter 12(2), 74–82 (2011)CrossRefGoogle Scholar
  8. 8.
    Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10), 3605–3620 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks 6(2), 13 (2010)CrossRefGoogle Scholar
  10. 10.
    Fuentes, D., Gonzalez-Abril, L., Angulo, C., Ortega, J.: Online motion recognition using an accelerometer in a mobile device. Expert Systems with Applications 39(3), 2461–2465 (2012)CrossRefGoogle Scholar
  11. 11.
    Cuberos, F., Ortega, J., Velasco, F., González, L.: Qsi-alternative labelling and noise sensitivity. In: 17th International Workshop on Qualitative Reasoning (2003)Google Scholar
  12. 12.
    Gonzalez-Abril, L., Cuberos, F., Velasco, F., Ortega, J.: Ameva: An autonomous discretization algorithm. Expert Systems with Applications 36(3), 5327–5332 (2009)CrossRefGoogle Scholar
  13. 13.
    Kurgan, L., Cios, K.: Caim discretization algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2), 145–153 (2004)CrossRefGoogle Scholar
  14. 14.
    Álvarez García, J.A., Barsocchi, P., Chessa, S., Salvi, D.: Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 evaal competition. Journal of Ambient Intelligence and Smart Environments 5(1), 119–132 (2013)Google Scholar
  15. 15.
    Nergui, M., Yoshida, Y., Gonzalez, J., Koike, Y., Sekine, M., Yu, W.: Human motion tracking and measurement by a mobile robot. In: 7th International Conference on Intelligent Unmanned Systems (2011)Google Scholar
  16. 16.
    Hong, J.H., Ramos, J., Dey, A.K.: Understanding physiological responses to stressors during physical activity. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 270–279. ACM (2012)Google Scholar
  17. 17.
    Li, N., Crane, M., Ruskin, H.J.: Automatically detecting “significant events” on sensecam. Ercim News 2011(87) (2011)Google Scholar
  18. 18.
    Wolf, C., Mille, J., Lombardi, E., Celiktutan, O., Jiu, M., Baccouche, M., Dellandréa, E., Bichot, C.E., Garcia, C., Sankur, B.: The liris human activities dataset and the icpr 2012 human activities recognition and localization competition. Technical Report LIRIS RR-2012-004, Laboratoire d’Informatique en Images et Systmes d’Information, INSA de Lyon, France (2012)Google Scholar
  19. 19.
    Sagha, H., Digumarti, S.T., del Millan, J., Chavarriaga, R., Calatroni, A., Roggen, D., Troster, G.: Benchmarking classification techniques using the opportunity human activity dataset. In: 2011 IEEE International Conference on Systems, Man and Cybernetics, pp. 36–40. IEEE (2011)Google Scholar
  20. 20.
    Kawaguchi, N., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., Inoue, S., Kawahara, Y., Sumi, Y., Nishio, N.: Hasc challenge: gathering large scale human activity corpus for the real-world activity understandings. In: Proceedings of the 2nd Augmented Human International Conference, p. 27. ACM (2011)Google Scholar
  21. 21.
    Loseu, V., Jafari, R.: Power aware wireless data collection for bsn data repositories. In: 2011 International Conference on Body Sensor Networks, pp. 19–21. IEEE (2011)Google Scholar
  22. 22.
    He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 5041–5044. IEEE (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Ángel Álvarez de la Concepción
    • 1
  • Luis Miguel Soria Morillo
    • 1
  • Luis González Abril
    • 2
  • Juan Antonio Ortega Ramírez
    • 1
  1. 1.Computer Languages and Systems Dept.University of SevilleSevilleSpain
  2. 2.Applied Economics I Dept.University of SevilleSevilleSpain

Personalised recommendations