Provenance Verification

  • Rupak Majumdar
  • Roland Meyer
  • Zilong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8169)


The provenance of an object is the history of its origin and derivation. Provenance tracking records the provenance of an object as it evolves. In computer science, provenance tracking has been studied in many different settings, such as databases [7,3,2], scientific workflows [13,5], and programanalysis [4,12,9], often under different names (lineage, dependence analysis, taint analysis) and with varying degrees of (in)formality. Provenance information can be used inmanyways, for example, to identify which sources of data led to a result, to ensure reproducibility of a scientific workflow, or to check security properties such as information flow.


Data Provenance Provenance Information Logic Provenance Provenance Tracking Taint Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321. IEEE (1996)Google Scholar
  2. 2.
    Benjelloun, O., Sarma, A., Halevy, A.Y., Widom, J.: ULDBs: Databases with uncertainty and lineage. In: VLDB, pp. 953–964. ACM (2006)Google Scholar
  3. 3.
    Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Cheney, J., Ahmed, A., Acar, U.: Provenance as dependency analysis. Math. Struct. in Computer Science 21, 1301–1337 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a warehousing environment. ACM TODS 25, 179–227 (2000)CrossRefGoogle Scholar
  6. 6.
    Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. Submitted for publication, TOPLAS (2011)Google Scholar
  7. 7.
    Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40. ACM (2007)Google Scholar
  8. 8.
    Hüchting, R., Majumdar, R., Meyer, R.: A theory of name boundedness. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 182–196. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Livshits, B., Lam, M.: Finding security errors in Java programs with static analysis. In: Usenix Security Symposium, pp. 271–286 (2005)Google Scholar
  10. 10.
    Majumdar, R., Meyer, R., Wang, Z.: Static provenance verification for message passing programs. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 366–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Meyer, R.: On boundedness in depth in the π-calculus. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS. IFIP, vol. 273, pp. 477–489. Springer, Boston (2008)Google Scholar
  12. 12.
    Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE J. Selected Areas in Communications 21, 5–19 (2003)CrossRefGoogle Scholar
  13. 13.
    Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Record 34(3), 31–36 (2005)CrossRefGoogle Scholar
  14. 14.
    Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in distributed systems. In: Theory and Practice of Provenance (2009)Google Scholar
  15. 15.
    Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rupak Majumdar
    • 1
  • Roland Meyer
    • 2
  • Zilong Wang
    • 1
  1. 1.MPI-SWSGermany
  2. 2.University of KaiserslauternGermany

Personalised recommendations