Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models

  • Fabrizio Maria Maggi
  • Andrea Burattin
  • Marta Cimitile
  • Alessandro Sperduti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8185)


Today’s business processes are often controlled and supported by information systems. These systems record real-time information about business processes during their executions. This enables the analysis at runtime of the process behavior. However, many modern systems produce “big data”, i.e., collections of data sets so large and complex that it becomes impossible to store and process all of them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. In this paper, we present a novel framework for the discovery of LTL-based declarative process models from streaming event data in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. The framework continuously updates a set of valid business constraints based on the events occurred in the event stream. In addition, our approach is able to provide meaningful information about the most significant concept drifts, i.e., changes occurring in a process during its execution. We report about experimental results obtained using logs pertaining the health insurance claims handling in a travel agency.


Process Discovery Event Stream Analysis Operational Support Concept Drift Linear Temporal Logic Business Constraints Declare 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    3TU Data Center. BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54Google Scholar
  2. 2.
    Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems, vol. 31. Springer, US (2007)CrossRefGoogle Scholar
  3. 3.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis Learning Examples. Journal of Machine Learning Research 11, 1601–1604 (2010)Google Scholar
  4. 4.
    Jagadeesh Chandra Bose, R.P.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD thesis, Eindhoven University of Technology (2012)Google Scholar
  5. 5.
    Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)Google Scholar
  6. 6.
    Burattin, A.: Applicability of Process Mining Techniques in Business Environments. PhD Thesis, University of Bologna (2013)Google Scholar
  7. 7.
    Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming Event Data. ArXiv CoRR (December 2012)Google Scholar
  8. 8.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting Inductive Logic Programming Techniques for Declarative Process Mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) TOPNOC II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. The MIT Press (September 2001)Google Scholar
  10. 10.
    Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: a Review. ACM Sigmod Record 34(2), 18–26 (2005)CrossRefGoogle Scholar
  12. 12.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. JMLR 10, 1305–1340 (2009)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Golab, L., Tamer Özsu, M.: Issues in Data Stream Management. ACM SIGMOD Record 32(2), 5–14 (2003)CrossRefGoogle Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Int. Journal on Software Tools for Technology Transfer, 224–233 (2003)Google Scholar
  15. 15.
    Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proc. of CIDM, pp. 192–199. IEEE (2011)Google Scholar
  18. 18.
    Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357 (2002)Google Scholar
  19. 19.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: An empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Rozinat, A., Alves de Medeiros, A.K., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice: position paper. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Schweikardt, N.: Short-Entry on One-Pass Algorithms. In: Encyclopedia of Database Systems, pp. 1948–1949 (2009)Google Scholar
  22. 22.
    Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process model repositories. Computers in Industry 63(2), 98–111 (2012)CrossRefGoogle Scholar
  24. 24.
    Steeman, W.: Bpi challenge 2013, incidents (2013)Google Scholar
  25. 25.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  26. 26.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)Google Scholar
  27. 27.
    van Dongen, B.F.: Bpi challenge 2012 (2012)Google Scholar
  28. 28.
    Daelemans, W., Goethals, B., Morik, K. (eds.): ECML PKDD 2008, Part I. LNAI (LNAI), vol. 5211, pp. 672–687. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23(1), 69–101 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabrizio Maria Maggi
    • 1
  • Andrea Burattin
    • 2
  • Marta Cimitile
    • 3
  • Alessandro Sperduti
    • 2
  1. 1.University of TartuEstonia
  2. 2.University of PadovaItaly
  3. 3.Unitelma Sapienza UniversityItaly

Personalised recommendations