A Data Space System for the Criminal Justice Chain

  • Jan van Dijk
  • Sunil Choenni
  • Erik Leertouwer
  • Marco Spruit
  • Sjaak Brinkkemper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8185)


In this paper we present the concepts and implementation of a data space system for the management of data from heterogeneous sources in the criminal justice field. Our system exploits domain knowledge in the field of justice to streamline and to relate the content of different databases in the chain. In our system, domain knowledge is encoded in a space manager layer. Furthermore, in this layer it is decided which databases should be used to answer a query. This decision is taken on the basis of the encoded domain knowledge, and the content of the databases and its quality.


data space system criminal justice chain domain knowledge chain management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Computing Surveys 22(3), 183–236 (1990)CrossRefGoogle Scholar
  2. 2.
    Cabibbo, L., Torlone, R.: Integrating heterogeneous multidimensional databases. In: Frew, J. (ed.) 17th International Conference on Scientific and Statistical Database Management, pp. 205–214. Lawrence Berkeley Laboratory, Berkeley (2005)Google Scholar
  3. 3.
    Winkler, W.E.: Matching and record linkage. In: Cox, B.G., Binder, D.A., Chinnappa, B.N. (eds.) Business Survey Methods, pp. 355–384. Wiley, New York (1995)Google Scholar
  4. 4.
    Wilkins, D., Pillaipakkamnatt, K.: The effectiveness of machine learning techniques for predicting time to case disposition. In: 6th International Conference on Artificial Intelligence and Law, pp. 106–113. ACM, New York (1997)Google Scholar
  5. 5.
    van den Braak, S., Choenni, S., Verwer, S.: Combining and Analyzing Judicial Databases. In: Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination & Privacy in the Information Society. SAPERE, vol. 3, pp. 191–206. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Kalidien, S.N., Choenni, R., Meijer, R.F.: Crime statistics online: potentials and challenges. In: 11th Annual International Digital Government Research Conference on Public Administration Online: Challenges and Opportunities (dg.o 2010), pp. 131–137. Digital Government Society of North America (2010)Google Scholar
  7. 7.
    Choenni, S., van Dijk, J., Leeuw, F.: Preserving privacy whilst integrating data: Applied to criminal justice. Information Polity 15(1,2), 125–138 (2010)Google Scholar
  8. 8.
    Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces, a new abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)CrossRefGoogle Scholar
  9. 9.
    Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.: Dimensions of dataspaces. In: Sexton, A.P. (ed.) BNCOD 2009. LNCS, vol. 5588, pp. 55–66. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Hedeler, C., Fernandes, A.A.A., Belhajjame, K., Mao, L., Guo, C., Paton, N.W., Embury, S.M.: A functional model for dataspace management systems. In: Catania, B., Jain, L.C. (eds.) Advanced Query Processing. ISRL, vol. 36, pp. 305–341. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Blunschi, L., Dittrich, J.P., Girard, O.R., Karakashian, S.K., Salles, M.A.V.: A dataspace odyssey: The iMeMex personal dataspace management system. In: Proceedings of the Conference on Innovative Data Systems Research (CIDR), pp. 114–119 (2007)Google Scholar
  12. 12.
    Dong, X., Halevy, A.Y.: A platform for personal information management and integration. In: CIDR, pp. 119–130 (2005)Google Scholar
  13. 13.
    Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems. In: SIGMOD, pp. 861–874 (2008)Google Scholar
  14. 14.
    Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.: Web-scale data integration: You can afford to pay as you go. In: CIDR, pp. 342–350 (2007)Google Scholar
  15. 15.
    Leser, U., Naumann, F.: (Almost) hands-off information integration for the life sciences. In: CIDR, pp. 131–143 (2005)Google Scholar
  16. 16.
    Agarwal, S., Keller, A.M., Wiederhold, G., Saraswat, K.: Flexible Relation: An approach for integrating data from multiple, possibly inconsistent databases. In: 11th International Conference on Data Engineering, pp. 495–504. Stanford Univ., CA (1995)Google Scholar
  17. 17.
    Choenni, S., Blanken, H., Chang, T.: On the Selection of Secondary Indices in Relational Databases. Data & Knowledge Engineering 11(3), 207–233 (1995)CrossRefGoogle Scholar
  18. 18.
    Berti-Équille, L.: Quality Awareness for Managing and Mining Data. Habilitation à diriger des recherches. L’Université de Rennes, France (2007)Google Scholar
  19. 19.
    Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications of the ACM - Supporting Community and Building Social Capital 45(4), 211–218 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan van Dijk
    • 1
  • Sunil Choenni
    • 1
  • Erik Leertouwer
    • 1
  • Marco Spruit
    • 2
  • Sjaak Brinkkemper
    • 2
  1. 1.Research & Documentation Centre (WODC)Dutch Ministry of Security & JusticeThe HagueThe Netherlands
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations