Identification of All Exact and Approximate Inverted Repeats in Regular and Weighted Sequences

  • Carl Barton
  • Costas S. Iliopoulos
  • Nicola Mulder
  • Bruce Watson
Part of the Communications in Computer and Information Science book series (CCIS, volume 384)


The detection of various types of repeats is a fundamental and well studied problem in stringology. In this paper we present extensions to this problem with applications to bioinformatics. In this paper we consider the detection of all exact and approximate inverted repeats, as well as all exact and approximate weighted inverted repeats and give efficient algorithms for their computation.


Inverted Repeat Weighted Sequence Linear Time Algorithm Lower Common Ancestor Lower Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu, T.: Dynamic programming algorithms for rna secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brown, M., Wilson, C.: Rna pseudoknot modeling using intersections of stochastic context free grammars with applications to database search. In: Pacific Symposium on Biocomputing, pp. 109–125 (1995)Google Scholar
  3. 3.
    Barton, S.P.P.C., Iliopoulos, C.S., Smyth, W.F.: Prefix tables & border arrays with k-mismatches & applications (2013) (submitted for publication)Google Scholar
  4. 4.
    Chen, J.-L., Greider, C.W.: Functional analysis of the pseudoknot structure in human telomerase rna. Proceedings of the National Academy of Sciences of the United States of America 102(23), 8080–8085 (2005)Google Scholar
  5. 5.
    Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Information Processing Letters 12(5), 244–250 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fischer, J.: Inducing the lcp-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tandem repeats in a string. Journal of Computer and System Sciences 69(4), 525–546 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding all approximate gapped palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and applications to approximate string searching (2010)Google Scholar
  11. 11.
    Iliopoulos, C.S., Makris, C., Panagis, Y., Perdikuri, K.: Evangelos Theodoridis, and Athanasios Tsakalidis. The weighted suffix tree: An efficient data structure for handling molecular weighted sequences and its applications. Fundam. Inf. 71(2,3), 259–277 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kandoth, C., Ercal, F., Frank, R.: A framework for automated enrichment of functionally significant inverted repeats in whole genomes. BMC Bioinformatics 11(suppl. 6), 1–10 (2010)Google Scholar
  13. 13.
    Kato, Y., Seki, H., Kasami, T.: Stochastic multiple context-free grammar for rna pseudoknot modeling. In: Proceedings of the Eighth International Workshop on Tree Adjoining Grammar and Related Formalisms, TAGRF 2006, Stroudsburg, PA, USA, pp. 57–64. Association for Computational Linguistics (2006)Google Scholar
  14. 14.
    Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proceedings of the 1999 Symposium on Foundations of Computer Science, pp. 596–604. IEEE Computer Society (1999)Google Scholar
  15. 15.
    Lyngso, R.B., Pedersen, C.N.S.: RNA Pseudoknot Prediction in Energy-Based Models. Journal of Computational Biology 7(3-4), 409–427 (2000)CrossRefGoogle Scholar
  16. 16.
    Main, M.G., Lorentz, R.J.: An o(n log n) algorithm for finding all repetitions in a string. Journal of Algorithms 5(3), 422–432 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346351 (1975)CrossRefGoogle Scholar
  18. 18.
    Nong, G., Zhang, S., Chan, W.H.: Linear Suffix Array Construction by Almost Pure Induced-Sorting. In: Data Compression Conference, pp. 193–202 (2009)Google Scholar
  19. 19.
    Pleij, C.W.A., Rietveld, K., Bosch, L.: A new principle of rna folding based on pseudoknotting. Nucleic. Acids Research 13(5), 1717–1731 (1985) C.W.A. Pleij, K. Rietveld, L. Bosch CrossRefGoogle Scholar
  20. 20.
    Porto, A.H.L., Barbosa, V.C.: Finding approximate palindromes in strings (2002)Google Scholar
  21. 21.
    Stoye, J., Gusfield, D.: Simple and exible detection of contiguous repeats using a suffix tree. Theoretical Computer Science 270(12), 843–856 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carl Barton
    • 1
  • Costas S. Iliopoulos
    • 1
    • 3
  • Nicola Mulder
    • 2
  • Bruce Watson
    • 3
  1. 1.Dept. of InformaticsKing’s College LondonLondonUK
  2. 2.Computational Biology GroupUniversity of Cape TownCape TownSouth Africa
  3. 3.Fastar GroupUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations