The Strength of Negative Opinions

  • Thanos Papaoikonomou
  • Mania Kardara
  • Konstantinos Tserpes
  • Theodora Varvarigou
Part of the Communications in Computer and Information Science book series (CCIS, volume 384)


We investigate signed social networks, in which users are connected via directional signed links indicating their opinions on each other. Predicting the sign of such links is a crucial task for many real world applications like recommendation systems. Based on the premise that like-minded users tend to influence each other more than others, we present a logistic regression classifier built on evidence drawn from the users’ ego-networks. The main focus of this work is to examine and compare the relative strength of positive and negative opinions investigating to what extent each type of link affects the overall prediction accuracy. We evaluate our approach through a thorough experimental study that comprises three large-scale real-world datasets.


signed social networks edge sign prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Boucher, J., Osgood, C.E.: The pollyanna hypothesis. Journal of Verbal Learning and Verbal Behavior 8(1), 1–8 (1969)CrossRefGoogle Scholar
  3. 3.
    Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychological Review 63(5), 277–293 (1956)CrossRefGoogle Scholar
  4. 4.
    DuBois, T., Golbeck, J., Srinivasan, A.: Predicting trust and distrust in social networks. In: SocialCom/PASSAT, pp. 418–424. IEEE (2011)Google Scholar
  5. 5.
    Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Garcia, D., Garas, A., Schweitzer, F.: Positive words carry less information than negative words. CoRR, abs/1110.4123 (2011)Google Scholar
  7. 7.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 403–412. ACM, New York (2004)Google Scholar
  8. 8.
    Heider, F.: Attitudes and Cognitive Organization. Journal of Psychology 21, 107–112 (1946)CrossRefGoogle Scholar
  9. 9.
    Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 741–750. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 641–650. ACM, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 1361–1370. ACM, New York (2010)Google Scholar
  12. 12.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM 2003, pp. 556–559. ACM, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Massa, P., Avesani, P.: Controversial users demand local trust metrics: an experimental study on community. In: Proceedings of the 20th National Conference on Artificial Intelligence, vol. 1, pp. 121–126. AAAI Press (2005)Google Scholar
  14. 14.
    Mishra, A., Bhattacharya, A.: Finding the bias and prestige of nodes in networks based on trust scores. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 567–576. ACM, New York (2011)Google Scholar
  15. 15.
    Provost, F.: Machine learning from imbalanced data sets 101 (extended abstract)Google Scholar
  16. 16.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)Google Scholar
  17. 17.
    Victor, P., Cornelis, C., De Cock, M., Herrera-Viedma, E.: Practical aggregation operators for gradual trust and distrust. Fuzzy Sets Syst. 184(1), 126–147 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, J., Mani, I.: KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Datasets (2003)Google Scholar
  19. 19.
    Ziegler, C.-N., Golbeck, J.: Investigating interactions of trust and interest similarity. Decis. Support Syst. 43(2), 460–475 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thanos Papaoikonomou
    • 1
  • Mania Kardara
    • 1
  • Konstantinos Tserpes
    • 1
  • Theodora Varvarigou
    • 1
  1. 1.National Technical University of AthensGreece

Personalised recommendations