Analysis of Heating Systems in Buildings Using Self-Organizing Maps

  • Pablo Barrientos
  • Carlos J. del Canto
  • Antonio Morán
  • Serafín Alonso
  • Miguel A. Prada
  • Juan J. Fuertes
  • Manuel Domínguez
Part of the Communications in Computer and Information Science book series (CCIS, volume 383)

Abstract

The highest cause of energy consumption in buildings is due to ’Heating, Ventilation, and Air Conditioning’ (HVAC) systems. However, a large number of interconnected variables are involved in the control of these systems, so conventional analysis approaches are difficult. For that reason, data analysis by means of dimensionality reduction techniques can be a useful approach to address energy efficiency in buildings. In this paper, a method is proposed to visualize the relevant features of a heating system and its behavior and to help finding correlations between temporal, production and distribution variables. It uses a modification of the self-organizing map. The proposed approach is applied to a real building at the University of León.

Keywords

Self-Organizing Maps Heating systems Data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Communication from the Commission: Energy efficiency: delivering the 20% target, COM (2008) 772 final. Technical report, Commission of the European Communities, Brussels (November 2008)Google Scholar
  2. 2.
    Sane, H., Haugstetter, C., Bortoff, S.: Building HVAC control systems - role of controls and optimization. In: American Control Conference, pp. 1121–1126 (2006)Google Scholar
  3. 3.
    Meyers, S., Mills, E., Chen, A., Demsetz, L.: Building data visualization for diagnostics. ASHRAE Journal 38(6), 8 (1996)Google Scholar
  4. 4.
    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer (2007)Google Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)CrossRefGoogle Scholar
  7. 7.
    Alonso, S., Sulkava, M., Prada, M.A., Domínguez, M., Hollmén, J.: EnvSOM: A SOM algorithm conditioned on the environment for clustering and visualization. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 61–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  9. 9.
    Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Alonso, S., Morán, A., Prada, M.A., Barrientos, P., Domínguez, M.: Monitoring power consumption using a generalized variant of self-organizing map (SOM). International Journal of Modern Physics B 26(25), 1246005 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo Barrientos
    • 1
  • Carlos J. del Canto
    • 1
  • Antonio Morán
    • 1
  • Serafín Alonso
    • 1
  • Miguel A. Prada
    • 1
  • Juan J. Fuertes
    • 1
  • Manuel Domínguez
    • 1
  1. 1.SUPPRESS Research GroupEsc. de Ing. Industrial e InformáticaLeónSpain

Personalised recommendations