Abstract

Fuzzy neural networks are a powerful machine learning technique, that can be used in a large number of applications. Proper learning of fuzzy neural networks requires a lot of computational effort and the fuzzy-rule designs of these networks suffer from the curse of dimensionality. To alleviate these problems, a simplified fuzzy neural network is presented. The proposed simplified network model can be efficiently initialized with considerably high predictive power. We propose the ensembling approach, thus, using the new simplified neural network models as the type of a general-purpose fuzzy base-learner. The new base-learner properties are analyzed and the practical results of the new algorithm are presented on the robotic hand controller application.

Keywords

neural network gradient boosting fuzzy neural network neural ensemble boosting robotic control machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gan, M.-T., Hanmandlu, M., Tan, A.H.: From a Gaussian mixture model to additive fuzzy systems. Trans. Fuz Sys. 13(3), 303–316 (2005)CrossRefGoogle Scholar
  2. 2.
    Kosko, B.: Fuzzy Systems as Universal Approximator. B.s. IEEE Transactions on Computers 43, 1329–1333 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    George, E., Tsekouras, H.S.: A hierarchical fuzzy-clustering approach to fuzzy modeling. Fuzzy Sets and Systems 150, 245–266 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Friedman, J.: Greedy Boosting Approximation: A Gradient Boosting Machine. The Annals of Statistics 29, 1189–1232 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bonissone, P., Cadenas, J.M., Garrido, M.C., Diaz-Valladares, A.R.: A fuzzy random forest. International Journal of Approximate Reasoning 51, 729–747 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hothorn, T., Buhlmann, P., Kneib, T., Schmid, M., Hofner, B.: Model-based boosting 2.0. Journal of Machine Learning Research 11, 2109–2113 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Natekin, A., Knoll, A.: Gradient Boosting Machines, A Tutorial. Frontiers in Neurorobotics (2013), doi:10.3389 Google Scholar
  8. 8.
    Vogel, J., Castellini, C., van der Smagt, P.: EMG-based teleoperation and manipulation with the DLR LWR-III. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2011)Google Scholar
  9. 9.
    Johnson, R., Zhang, T.: Learning Nonlinear Functions Using Regularized Greedy Forest. arXiv:1109.0887 (2012)Google Scholar
  10. 10.
    Bissacco, A., Yang, M.-H., Soatto, S.: Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007 (2007)Google Scholar
  11. 11.
    Jang, J.-S.R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man and Cybernetics 23, 665–685 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexey Natekin
    • 1
  • Alois Knoll
    • 2
  1. 1.Fortiss GmbHMunichGermany
  2. 2.Technical University MunichGarchingGermany

Personalised recommendations