Advertisement

Improving Relational Classification Using Link Prediction Techniques

  • Cristina Pérez-Solà
  • Jordi Herrera-Joancomartí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8188)

Abstract

In this paper, we address the problem of classifying entities belonging to networked datasets. We show that assortativity is positively correlated with classification performance and how we are able to improve classification accuracy by increasing the assortativity of the network. Our method to increase assortativity is based on modifying the weights of the edges using a scoring function. We evaluate the ability of different functions to serve for this purpose. Experimental results show that, for the appropriated functions, classification on networks with modified weights outperforms the classification using the original weights.

Keywords

Class Label Online Social Network Preferential Attachment Original Graph Link Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Macskassy, S., Provost, F.: A simple relational classifier. In: Proceedings of the 2nd Workshop on Multi-Relational Data Mining, KDD 2003, pp. 64–76 (2003)Google Scholar
  2. 2.
    Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, vol. 27, pp. 307–318. ACM Press, New York (1998)Google Scholar
  3. 3.
    Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with identifier attributes. Machine Learning 62(1-2), 65–105 (2006)CrossRefGoogle Scholar
  4. 4.
    Lu, Q., Getoor, L.: Link-based classification using labeled and unlabeled data. In: Proceedings of the ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data (2003)Google Scholar
  5. 5.
    Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study. Journal of Machine Learning Research 8, 935–983 (2007)Google Scholar
  6. 6.
    Bilgic, M., Getoor, L.: Effective label acquisition for collective classification. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 43–51 (2008)Google Scholar
  7. 7.
    Newman, M.E.J.: Mixing patterns in networks. Physical Review E 67, 026126 (2003)Google Scholar
  8. 8.
    Liben, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the International Conference on Information and Knowledge Management, pp. 556–559 (2003)Google Scholar
  9. 9.
    Adamic, L., Adar, E.: Friends and neighbors on the Web. Social Networks 25(3), 211–230 (2003)CrossRefGoogle Scholar
  10. 10.
    Macskassy, S., Provost, F.: NetKit-SRL - network learning toolkit for statistical relational learningGoogle Scholar
  11. 11.
    Spearman, C.: The proof and measurement of association between two things. The American Journal of Psychology 15(1), 72–101 (1904)CrossRefGoogle Scholar
  12. 12.
    Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 593–598 (2004)Google Scholar
  13. 13.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6), 721–741 (1984)CrossRefGoogle Scholar
  14. 14.
    Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI-2000 Workshop on Learning Statistical Models from Relational Data (2000)Google Scholar
  15. 15.
    Carvalho, V., Cohen, W.: On the collective classification of email speech acts. In: Proceedings of the International Conference on Research and Development in Information Retrieval, pp. 345–352 (2005)Google Scholar
  16. 16.
    Bhagat, S., Cormode, G., Rozenbaum, I.: Applying link-based classification to label blogs. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD/SNA-KDD 2007. LNCS, vol. 5439, pp. 97–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristina Pérez-Solà
    • 1
  • Jordi Herrera-Joancomartí
    • 1
    • 2
  1. 1.Dept. d’Enginyeria de la Informació i les ComunicacionsUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Internet Interdisciplinary Institute (IN3)UOCSpain

Personalised recommendations