Advertisement

Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them

  • Albert Bifet
  • Jesse Read
  • Indrė Žliobaitė
  • Bernhard Pfahringer
  • Geoff Holmes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8188)

Abstract

Data stream classification plays an important role in modern data analysis, where data arrives in a stream and needs to be mined in real time. In the data stream setting the underlying distribution from which this data comes may be changing and evolving, and so classifiers that can update themselves during operation are becoming the state-of-the-art. In this paper we show that data streams may have an important temporal component, which currently is not considered in the evaluation and benchmarking of data stream classifiers. We demonstrate how a naive classifier considering the temporal component only outperforms a lot of current state-of-the-art classifiers on real data streams that have temporal dependence, i.e. data is autocorrelated. We propose to evaluate data stream classifiers taking into account temporal dependence, and introduce a new evaluation measure, which provides a more accurate gauge of data stream classifier performance. In response to the temporal dependence issue we propose a generic wrapper for data stream classifiers, which incorporates the temporal component into the attribute space.

Keywords

data streams evaluation temporal dependence 

References

  1. 1.
    Baena-Garcia, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Proc. of the 4th ECMLPKDD Int. Workshop on Knowledge Discovery from Data Streams, pp. 77–86 (2006)Google Scholar
  2. 2.
    Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proc. of the 7th SIAM Int. Conf. on Data Mining, SDM (2007)Google Scholar
  3. 3.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. J. of Mach. Learn. Res. 11, 1601–1604 (2010)Google Scholar
  4. 4.
    Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree learning from evolving data streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 299–310. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: Proc. of the 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD, pp. 139–148 (2009)Google Scholar
  7. 7.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)CrossRefGoogle Scholar
  8. 8.
    Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming imbalanced data. IEEE Transactions on Knowledge and Data Engineering (2013)Google Scholar
  9. 9.
    Gama, J., Castillo, G.: Learning with local drift detection. In: Li, X., Zaïane, O.R., Li, Z.-H. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 42–55. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gama, J., Sebastião, R., Rodrigues, P.: On evaluating stream learning algorithms. Machine Learning 90(3), 317–346 (2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gomes, J., Menasalvas, E., Sousa, P.: CALDS: context-aware learning from data streams. In: Proc. of the 1st Int. Workshop on Novel Data Stream Pattern Mining Techniques, StreamKDD, pp. 16–24 (2010)Google Scholar
  13. 13.
    Grinblat, G., Uzal, L., Ceccatto, H., Granitto, P.: Solving nonstationary classification problems with coupled support vector machines. IEEE Transactions on Neural Networks 22(1), 37–51 (2011)CrossRefGoogle Scholar
  14. 14.
    Hand, D.: Classifier technology and the illusion of progress. Statist. Sc. 21(1), 1–14 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Harries, M.: SPLICE-2 comparative evaluation: Electricity pricing. Tech. report, University of New South Wales (1999)Google Scholar
  16. 16.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc. of the 7th ACM SIGKDD Int. Conf. on Knowl. Disc. and Data Mining, KDD, pp. 97–106 (2001)Google Scholar
  17. 17.
    Kolter, J., Maloof, M.: Dynamic weighted majority: An ensemble method for drifting concepts. J. of Mach. Learn. Res. 8, 2755–2790 (2007)zbMATHGoogle Scholar
  18. 18.
    Martinez-Rego, D., Perez-Sanchez, B., Fontenla-Romero, O., Alonso-Betanzos, A.: A robust incremental learning method for non-stationary environments. Neurocomput. 74(11), 1800–1808 (2011)CrossRefGoogle Scholar
  19. 19.
    Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta 405(2), 442–451 (1975)CrossRefGoogle Scholar
  20. 20.
    Pavlidis, N., Tasoulis, D., Adams, N., Hand, D.: Lambda-perceptron: An adaptive classifier for data streams. Pattern Recogn. 44(1), 78–96 (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ross, G., Adams, N., Tasoulis, D., Hand, D.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recogn. Lett. 33, 191–198 (2012)CrossRefGoogle Scholar
  22. 22.
    Tomczak, J., Gonczarek, A.: Decision rules extraction from data stream in the presence of changing context for diabetes treatment. Knowl. Inf. Syst. 34(3), 521–546 (2013)CrossRefGoogle Scholar
  23. 23.
    Zliobaite, I.: Combining similarity in time and space for training set formation under concept drift. Intell. Data Anal. 15(4), 589–611 (2011)Google Scholar
  24. 24.
    Zliobaite, I.: How good is the electricity benchmark for evaluating concept drift adaptation. CoRR, abs/1301.3524 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Albert Bifet
    • 1
  • Jesse Read
    • 2
  • Indrė Žliobaitė
    • 3
  • Bernhard Pfahringer
    • 4
  • Geoff Holmes
    • 4
  1. 1.Yahoo! ResearchSpain
  2. 2.Universidad Carlos IIISpain
  3. 3.Dept. of Information and Computer ScienceAalto University and Helsinki Institute for Information Technology (HIIT)Finland
  4. 4.University of WaikatoNew Zealand

Personalised recommendations