Plasticity of Pressure-Sensitive Materials pp 205-251

Part of the Engineering Materials book series (ENG.MAT.)

| Cite as

Transmission Conditions for Thin Elasto-Plastic Pressure-Dependent Interphases

  • Gennady Mishuris
  • Wiktoria  Miszuris
  • Andreas Öchsner
  • Andrea Piccolroaz


A thin soft elasto-plastic interphase between two different media is under consideration. The intermediate layer is assumed to be of infinitesimal thickness and is modeled by nonlinear transmission conditions which incorporate the elasto-plastic material behavior of the layer. The case of pressure-independent (von Mises) as well as pressure-dependent yield condition is theoretically treated. Finite element analysis of a bimaterial structure with such an imperfect elasto-plastic interface (von Mises) shows the efficiency of the approach and illustrates some restrictions of its application.


Interface Inhomogeneous Nonlinear Deformation theory von Mises material Drucker-Prager material 


  1. 1.
    Antipov, Y.A., Avila-Pozos, O., Kolaczkowski, S.T., Movchan, A.B.: Mathematical model of delamination cracks on imperfect interfaces. Int. J. Solids Struct. 38, 6665–6697 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Avila-Pozos, O., Klabring, A., Movchan, A.B.: Asymptotic model of ortotropic highly inhomogeneous layered structure. Mech. Mater. 31, 101–115 (1999)CrossRefGoogle Scholar
  3. 3.
    Bigoni, D.: Nonlinear Solid Mechanics Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  4. 4.
    Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfacses in two-dimentional elasticity. Mech. Mater. 33, 309–323 (2001)CrossRefGoogle Scholar
  5. 5.
    Benveniste, Y.: The effective mechanical behaviour of composite materials with imperfect contact between the constituens. Mech. Mater. 4, 197–208 (1985)CrossRefGoogle Scholar
  6. 6.
    Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988)CrossRefMATHGoogle Scholar
  7. 7.
    Chen, W.F.: Constitutive Equations for Engineering Materials. Elsevier, Amsterdam (1994)Google Scholar
  8. 8.
    Erdogan, F.: Fracture mechanics of interfaces. In: Balkoma, A.A. (ed.) Proceedings of the First International Conference on Damage and Failure of Interfaces DFI-I/Vienna/22-24 September 1997, Rotterdam-Brookfield, pp 3–36 (1997)Google Scholar
  9. 9.
    Hashin, Z.: Thermoeleastic properties of fiber composites with imperfect inyterface. Mech. Mater. 8, 3333–3348 (1990)Google Scholar
  10. 10.
    Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hassanipour, M., Öchsner, A.: Implementation of a pressure sensitive yield criterion for adhesives into a commercial finite element code. J. Adhesion 87, 1125–1147 (2011)CrossRefGoogle Scholar
  12. 12.
    Hatheway, A.E.: Evaluating stresses in adhesive bond lines. In: MSC/NASTRAN Users’ Conference March 13–17, 1989, Universal City (1989)Google Scholar
  13. 13.
    Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z. Angew Math. Mech. 4, 323–334 (1924)CrossRefGoogle Scholar
  14. 14.
    Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)MATHGoogle Scholar
  15. 15.
    Ikeda, T., Yamashita, A., Lee, D., Miyazaki, N.: Failure of a ductile adhesive layer constrained by hard adherends. Trans. ASME J. Eng. Mater. Technol. 122, 80–85 (2000)CrossRefGoogle Scholar
  16. 16.
    Jones, R.M.: Deformation Theory of Plasticity. Bull Ridge Publishing, Blacksburg (2009)Google Scholar
  17. 17.
    Kachanov, L.M.: Foundations of the Theory of Plasticity. North-Holland, Amsterdam (1971)MATHGoogle Scholar
  18. 18.
    Klabring, A., Movchan, A.B.: Asymptotic modelling of adheasive joints. Mech. Mater. 28, 137–145 (1998)CrossRefGoogle Scholar
  19. 19.
    Lakes, R.S.: Negative Poisson’s ratio materials. Science 238, 551 (1987)CrossRefGoogle Scholar
  20. 20.
    Lubarda, V.A.: Deformation theory of plasticity revisited. Proc. Mont. Acad. Sci. Arts 13, 117–143 (2000)Google Scholar
  21. 21.
    Lubliner, J.: Plasticity Theory. Macmillan, New York (1990)MATHGoogle Scholar
  22. 22.
    Mahnken, R., Schlimmer, M.: Simulation of strength difference in elasto-plasticity for adhesive materials. Int. J. Numer. Methods Eng. 63, 1461–1477 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Mishuris, G.: Interface crack and nonideal interface approach. Mode III. Int. J. Fract. 107(3), 279–296 (2001)CrossRefGoogle Scholar
  24. 24.
    Mishuris, G., Kuhn, G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. Z. Angew Math. Mech. 81(12), 811–826 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mishuris, G., Öchsner, A., Kuhn, G.: Imperfect interfaces in dissimilar elastic body: FEM-analysis. In: Ren, Z., Kuhn, G., Skerget, L., Hribersek, M. (eds.) Advanced Computational Engineering Mechanics. Proc. of the First Workshop, Maribor Slovenia, October 9–11, 2003, University of Maribor Publishers, Maribor (2003)Google Scholar
  26. 26.
    Mishuris, G., Öchsner, A.: Edge effects connected with thin interphases in composite materials. Compos. Struct. 68, 409–417 (2005)CrossRefGoogle Scholar
  27. 27.
    Mishuris, G., Öchsner, A.: 2D modelling of a thin elasto-plastic interphase between two different materials: plane strain case. Compos. Struct. 80, 361–372 (2007)CrossRefGoogle Scholar
  28. 28.
    Movchan, A.B., Movhan, N.V.: Mathematical Modelling of Solids with Nonregular Boundaries. CRC Press, London (1995)Google Scholar
  29. 29.
    Öchsner, A., Winter, W., Kuhn, G.: Damage and fracture of perforated aluminum alloys. Adv. Eng. Mater. 2, 423–426 (2000)CrossRefGoogle Scholar
  30. 30.
    Öchsner, A., Mishuris, G.: A new finite element formulation for thin non-homogeneous heat-conducting adhesive layers. Int. J. Adhes. Adhes. 22, 1365–1378 (2008)Google Scholar
  31. 31.
    Rosselli, F., Carbutt, P.: Structural bonding applications for the transportation industry. SAMPE J. 37(6), 7–13 (2001)Google Scholar
  32. 32.
    Sancaktar, E.: Complex constitutive adhesive models. In: Silva, L.F.M., Öchsner, A. (eds.) Modeling of Adhesively Bonded Joints, pp. 95–130. Springer, Berlin (2008)CrossRefGoogle Scholar
  33. 33.
    Yu, H.H., He, M.Y., Hutchinson, J.W.: Edge effects in thin film delamination. Acta Mater. 49, 93–107 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gennady Mishuris
    • 1
  • Wiktoria  Miszuris
    • 1
  • Andreas Öchsner
    • 2
    • 3
  • Andrea Piccolroaz
    • 1
    • 4
  1. 1.Department of Mathematics and Physics, IMPACS, PenglaisAberystwyth UniversityAberystwythUK
  2. 2.Griffith University, Griffith School of EngineeringSouthportAustralia
  3. 3.The University of NewcastleCallaghanAustralia
  4. 4.University of TrentoTrentoItaly

Personalised recommendations