Phenomenological Yield and Failure Criteria

  • Holm Altenbach
  • Alexandre Bolchoun
  • Vladimir A. Kolupaev
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Models for isotropic materials based on the equivalent stress concept are discussed. At first, so-called classical models which are useful in the case of absolutely brittle or ideal ductile materials are presented. Tests for basic stress states are suggested. At second, standard models describing the intermediate range between the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is expressed by various mathematical equations formulated, for example, in terms of invariants. At the same time the criteria can be visualized which simplifies the application. At third, in the main part pressure-insensitive, pressure-sensitive and combined models are separated. Fitting methods based on mathematical, physical and geometrical criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene) (POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of different approaches in modeling certain limit behavior. Two appendices are necessary for a better understanding of this chapter: in Chap. 2 applied invariants are briefly introduced and a table of discussed in this chapter criteria with references is given.

Keywords

Strength criteria Yield criteria Equivalent stress Pressure-insensitive criteria Pressure-sensitive criteria Limit surfaces 

References

  1. 1.
    Alpa, G.: On a statistical approach to brittle rupture for multiaxial states of stress. Eng. Fract. Mech. 19(5), 881–901 (1984)Google Scholar
  2. 2.
    Altenbach, H.: Criterion with application to strength, yielding, and damage of isotropic materials. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models, pp. 175–186. Academic Press, San Diego (2001a)Google Scholar
  3. 3.
    Altenbach, H.: A nonclassical model for creep-damage processes. Mater. Phys. Mech. 3, 25–35 (2001b)Google Scholar
  4. 4.
    Altenbach, H.: Strength hypotheses—a never ending story. Czasopismo Techniczne (Techn Trans) Politechniki Krakowkiej 107(20), 5–15 (2010)Google Scholar
  5. 5.
    Altenbach, H.: Kontinuumsmechanik - Eine elementare Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer Vieweg, Heidelberg (2012)Google Scholar
  6. 6.
    Altenbach, H., Kolupaev, V.A.: Fundamental forms of strength hypotheses. In: Indeitcev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVI Summer School Advanced Problems in Mechanics, Institute for Problems in Mechanical Engineering, pp. 32–45. RAS, St. Petersburg (2009)Google Scholar
  7. 7.
    Altenbach, H., Lauschke, U., Zolochevsky, A.: Ein verallgemeinertes Versagenskriterium und seine Gegenüberstellung mit Versuchsergebnissen. ZAMM 73(4–5), T 372-T 375 (1993)Google Scholar
  8. 8.
    Altenbach, H., Altenbach, J., Zolochevsky, A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)Google Scholar
  9. 9.
    Ambarcumyan, S.A.: Multimodulus Elasticity Theory (in Russ.: Raznomodul’naja teorija uprugosti). Nauka, Moscow (1982)Google Scholar
  10. 10.
    Andrew, W.: The effect of creep and other time related factors on plastics and elastomers, vol. I. Book B, New York (1991)Google Scholar
  11. 11.
    Annin, B.D.: Theory of ideal plasticity with a singular yield surface. J. Appl. Mech. Tech. Phys. 40(2), 347–353 (1999)MathSciNetGoogle Scholar
  12. 12.
    de Araújo, F.C.: Elasticidade e plasticidade. Imprensa Portuguesa, Porto (1961)Google Scholar
  13. 13.
    Argon, A., Andrews, R., Godrick, J., Whitney, W.: Plastic deformation bands in glassy polystyrene. J. Appl. Phys. 39(3), 1899–1906 (1968)Google Scholar
  14. 14.
    Aubertin, M., Simon, R.: Un critère de rupture multiaxial pour matériaux fragiles. Can. J. Civ. Eng. 25(2), 277–290 (1998)Google Scholar
  15. 15.
    Bach, C.: Elastizität und Festigkeit. Springer, New York (1902)Google Scholar
  16. 16.
    Backhaus, G.: Deformationsgesetze. Akademie-Verlag, Berlin (1983)Google Scholar
  17. 17.
    Balandin, P.P.: On the strength hypotheses (in Russ.: K voprosu o gipotezakh prochnosti). Vestnik inzhenerov i tekhnikov 1, 19–24 (1937)Google Scholar
  18. 18.
    Bardenheier, R.: Mechanisches Versagen von Polymerwerkstoffen: Anstrengungsbewertung mehrachsialer Spannungszustände. Hanser, München (1982)Google Scholar
  19. 19.
    Bauwens, J.: Yield condition and propagation of Lüders’ lines in tension-torsion experiments on poly (vinyl chloride). J. Polym. Sci., Part A-2: Polym. Phys. 8(6), 893–901 (1970)Google Scholar
  20. 20.
    Becker, W., Gross, D.: Mechanik elastischer Körper und Strukturen. Springer, Berlin (2002)Google Scholar
  21. 21.
    Beltrami, E.: Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento 18(1), 145–155 (1885)Google Scholar
  22. 22.
    Belyaev, N.M.: Strength of Materials. Mir Publ, Moscow (1979)Google Scholar
  23. 23.
    Betten, J.: Kontinuumsmechanik, 2nd edn. Springer, Berlin (2001)MATHGoogle Scholar
  24. 24.
    Betten, J.: Creep Mechanics. Springer Verlag, Berlin (2008)Google Scholar
  25. 25.
    Betten, J., Borrmann, M.: Der Poynting-Effekt als Ursache einer werkstoffbedingten Anisotropie. Forsch. Ingenieurwes. 54(1), 16–18 (1988)Google Scholar
  26. 26.
    Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41(11), 2855–2878 (2004)MathSciNetMATHGoogle Scholar
  27. 27.
    Billington, E.W.: The Poynting-Swift effect in relation to initial and post-yield deformation. Int. J. Solids Struct. 21(4), 355–371 (1985)MATHGoogle Scholar
  28. 28.
    Billington, E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd., Bristol (1986a)MATHGoogle Scholar
  29. 29.
    Billington, E.W.: The Poynting-Swift effect. Acta Mech. 58, 19–31 (1986b)MATHGoogle Scholar
  30. 30.
    Birger, I.A.: On a criterion for fracture and plasticity (in Russ.: Ob odnom kriterii razrushenija i plastichnosti). Mechanika tverdogo tela, Izvestija Akademii Nauk SSSR 4, 143–150 (1977)Google Scholar
  31. 31.
    Birger, I.A., Shopp, B.F., Iosilevich, G.B.: Strength Computations for Machine Components (in Russ.: Raschet na prochnost’ detalej mashin, Spravochnik). Mashinostroenie, Moscow (1993)Google Scholar
  32. 32.
    Blumenauer, H.: Werkstoffprüfung. Dt. Verl. für Grundstoffindustrie, Leipzig (1996)Google Scholar
  33. 33.
    Bolchoun, A., Kolupaev, V.A., Altenbach, H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch. Ingenieurwes. 75(2), 73–92 (2011)Google Scholar
  34. 34.
    Brencich, A., Gambarotta, L.: Isotropic damage model with different tensile-compressive response for brittle materials. Int. J. Solids Struct. 38(34), 5865–5892 (2001)MATHGoogle Scholar
  35. 35.
    Burzyński, W.: Studjum nad hipotezami wytężenia. Akademia Nauk Technicznych, Lwów (1928)Google Scholar
  36. 36.
    Burzyński, W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94(21), 259–262 (1929a)Google Scholar
  37. 37.
    Burzyński, W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 95(7), 87–88 (1929b)Google Scholar
  38. 38.
    Burzyński, W.: Theoretical foundations of the hypotheses of material effort. Eng. Trans. Pol. Acad. Sci. 56(Special Issue), 9–45 (2008)Google Scholar
  39. 39.
    Burzyński, W.: Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on material effort hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, 1928, 1–192. Eng. Trans. Pol. Acad. Sci. 57(3–4), 127–157 (2009)Google Scholar
  40. 40.
    Candland, C.T.: Implications of macroscopic failure criteria which are independent of hydrostatic stress. Int. J. Fract. 11(3), 540–543 (1975)Google Scholar
  41. 41.
    Cardarelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd edn. Springer, London (2008)Google Scholar
  42. 42.
    Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988)MATHGoogle Scholar
  43. 43.
    Chen, W.F., Zhang, H.: Structural Plasticity—Theory, Problems, and CAE Software. Springer, New York (1991)Google Scholar
  44. 44.
    Chong, E.K.P., Zak, S.H.: An Introduction to Optimization. Wiley, Hoboken, NJ (2008)MATHGoogle Scholar
  45. 45.
    Christensen, R.M.: The Theory of Materials Failure. University Press, Oxford (2013)Google Scholar
  46. 46.
    Christensen, R.M., Freeman, D.C., DeTeresa, S.J.: Failure criteria for isotropic materials, applications to low-density types. Int. J. Solids Struct. 39(4), 973–982 (2002)MATHGoogle Scholar
  47. 47.
    Coffin, L., Schenectady, N.: The flow and fracture of a brittle material. J. Appl. Mech. 17, 233–248 (1950)Google Scholar
  48. 48.
    Coulomb, C.A.: Essai sur une application des regles des maximis et minimis a quelquels problemes de statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav. 7, 343–387 (1776)Google Scholar
  49. 49.
    Cowan, H.J.: The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections. Mag. Concr. Res. 5(14), 75–86 (1953)Google Scholar
  50. 50.
    Darkov, A., Shpiro, G.: Strength of Materials (in Russ.: Soprotivlenie materialov). Visshaja Shkola, Moscow (1965)Google Scholar
  51. 51.
    Desai, C.S.: A general basis for yield, failure and potential functions in plasticity. Int. J. Numer. Anal. Meth. Geomech. 4(4), 361–375 (1980)Google Scholar
  52. 52.
    Diabgroup (2011) Technical manual, divinicell h. Tech. rep., www.diabgroup.com, HemmingenGoogle Scholar
  53. 53.
    Dodd, B., Naruse, K.: Limitation on isotropic yield criteria. Int. J. Mech. Sci. 31(7), 511–519 (1989)MATHGoogle Scholar
  54. 54.
    Drucker, D.C.: Stress-strain relations for strain hardening materials: Discussion and proposed experiments. In: Reissner E., Prager W., Stoker R.R. (eds.) Non-Linear Problems in Mechanics of Continua. Brown University. Proceedings of the First Symposium in Applied Mathematics, American Mathematical Society, vol. 1, PP. 181–187. New York (1949)Google Scholar
  55. 55.
    Drucker, D.C.: Limit analysis of two and three dimensional soil mechanics problems. J. Mech. Phys. Solids 1(4), 217–226 (1953)Google Scholar
  56. 56.
    Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157–165 (1952)MathSciNetMATHGoogle Scholar
  57. 57.
    Edelman, F., Drucker, D.C.: Some extensions of elementary plasticity theory. J. Franklin Inst. 251(6), 581–605 (1951)MathSciNetGoogle Scholar
  58. 58.
    Ehrenstein, G.W.: Mit Kunststoffen konstruieren. Hanser, München (1995)Google Scholar
  59. 59.
    Elias, H.G.: Makromoleküle: Physikalische Strukturen und Eigenschaften, vol. 2. Wiley-VCH, Weinheim (2001)Google Scholar
  60. 60.
    Ely, R.: Biaxial stress testing of acrylic tube specimens. Polym. Eng. Sci. 7(1), 40–44 (1967)Google Scholar
  61. 61.
    Eschenauer, H., Olhoff, N., Schnell, W.: Applied Structural Mechanics: Fundamentals of Elasticity, Load-bearing Structures, Structural Optimization. Springer, Berlin (1997)Google Scholar
  62. 62.
    Feodosiev, V.I.: Ten Lectures-Discussions of the Strength Theory (in Russ.: Desjat’ lekzij-besed po soprotivleniju materialov). Nauka, Moscow (1975)Google Scholar
  63. 63.
    Filin, A.P.: Applied Mechanics of Solid Deformable Bodies (in Russ.: Prikladnaja mechanika tverdogo deformiruemogo tela), vol. 1. Nauka, Moscow (1975)Google Scholar
  64. 64.
    Filonenko-Borodich, M.M.: Theory of Elasticity. P. Noordhoff W. N, Groningen (1960)Google Scholar
  65. 65.
    Filonenko-Boroditsch, M.M.: Festigkeitslehre, vol. 1. Technik, Berlin (1960)Google Scholar
  66. 66.
    Finnie, I., Heller, W.R.: Creep of Engineering Materials. McGraw-Hill, New York (1959)Google Scholar
  67. 67.
    Föppl, A., Föppl, L.: Drang und Zwang: Eine höhrere Festigkeitslehre für Ingenieure. R. Oldenbourg, München (1920)Google Scholar
  68. 68.
    Freudenthal, A., Gou, R.: Second order effects in the theory of plasticity. Acta Mech. 8(1), 34–52 (1969)MATHGoogle Scholar
  69. 69.
    Freudenthal, A.M.: Constitutive equations of rock with shear dilatancy. Tech. Rep. AD-AOll 402, DTIC Document (1975)Google Scholar
  70. 70.
    Fridman, Y.B.: Unified Theory of Strength (in Russ.: Edinaya teorija prochnosti). Oborongiz, Moscow (1943)Google Scholar
  71. 71.
    Fromm, H.: Grenzen des elastischen Verhaltens beanspruchter Stoffe. In: Auerbach F, Hort W. (eds.) Statik und Dynamik elastischer Körper nebst Anwendungsgebieten. II. Teil. Zum Gebrauch für Ingenieure, Physiker und Mathematiker, vol. 4, pp. 359–435. Verlag von Barth, J.A., Leipzig (1931)Google Scholar
  72. 72.
    Gdoutos, E.E.: Failure of cellular foams under multiaxial loading. Compos. A 33, 163–176 (2002)Google Scholar
  73. 73.
    Geniev, G.A., Kissjuk, V.N., Tjupin, G.A.: Plasticity Theory for Concrete and Reinforced Concrete (in Russ.: Teorija plastichnosti betona i zhelezhobetona). Strojizdat, Moscow (1974)Google Scholar
  74. 74.
    Gol’denblat, I.I., Kopnov, V.A.: Yield and Strength Criteria for Structural Materials (in Russ.: Kriterii prochnosti i plastichnosti konstrukzionnych materialov). Mashinostroenie, Moscow (1968)Google Scholar
  75. 75.
    Göldner, H., Holzweißig, F.: Leitfaden der Technischen Mechanik: Statik, Festigkeitslehre, Kinematik. Dynamik, Fachbuchverlag, Leipzig (1989)Google Scholar
  76. 76.
    Gollub, W.: Grenzen und Möglichkeiten der Mohr-Coulombschen Bruchbedingung, 18: Mechanik/Bruchmechanik, vol. 68. VDI, Düsseldorf (1989)Google Scholar
  77. 77.
    Grashof, F.: Theorie der Elasticität und Festigkeit. Gaertner, Berlin (1878)Google Scholar
  78. 78.
    Gross, D., Seelig, T.: Fracture Mechanics: with an Introduction to Micromechanics. Springer, Berlin (2011)Google Scholar
  79. 79.
    Gummert, P., Reckling. K.A.: Computation of the Bearing Capacity of Structures by the Method of Limiting Equilibrium (in Russ.: Raschet nesushej sposobnosti konstrukzij po metody predel’nogo ravnovesija). Strohizdat, Moscow (1949)Google Scholar
  80. 80.
    Haigh, B.P.: The strain-energy function and the elastic limit. Engineering 109, 158–160 (1920)Google Scholar
  81. 81.
    Häusler, O., Tsakmakis, C.: Torsion eines Kreiszylinders bei großen Deformationen und inkompressiblem Materialverhalten. Forschungszentrum Karlsruhe GmbH, Karlsruhe (1995)Google Scholar
  82. 82.
    Hayhurst, D.R.: Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20(6), 381–390 (1972)Google Scholar
  83. 83.
    Haythornthwaite, R.M.: Mechanics of triaxial tests for soil. Proc. ASCE J. Soil Mech. Found. Div. 86(SM5), 35–62 (1960)Google Scholar
  84. 84.
    Haythornthwaite, R.M.: Range of yield condition in ideal plasticity. Proc. ASCE J. Eng. Mech. Div. 87(EM6), 117–133 (1961)Google Scholar
  85. 85.
    Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. ZAMM 4(4), 323–334 (1924)Google Scholar
  86. 86.
    Hencky, H.: Ermüdung, Bruch, Plastizität. Stahlbau 16(23/24), 95–97 (1943)Google Scholar
  87. 87.
    Hill, R.: On the inhomogeneous deformation of a plastic lamina in a compression test. Phil. Mag. Series 7 41(319), 733–744 (1950)Google Scholar
  88. 88.
    Hoffman, O., Sachs, G.: Introduction to the Theory of Plasticity for Engineers. McGraw-Hill, New York (1953)Google Scholar
  89. 89.
    Holzmann, G., Meyer, H., Schumpich, G.: Technische Mechanik Festigkeitslehre. Springer, Vieweg, Wiesbaden (2012)Google Scholar
  90. 90.
    Hu, W., Wang, Z.R.: Multiple-factor dependence of the yielding behavior to isotropic ductile materials. Comput. Mater. Sci. 32(1), 31–46 (2005)Google Scholar
  91. 91.
    Huber, M.T.: Specific strain work as a measurment of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne 22, 34–40, 49–50, 61–62, 80–81 (1904)Google Scholar
  92. 92.
    Ishlinsky, A.Y.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114 (1940)Google Scholar
  93. 93.
    Ishlinsky, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja teorija plastichnosti). Fizmatlit, Moscow (2003)Google Scholar
  94. 94.
    Ismar, H., Mahrenholtz, O.: Über Beanspruchungshypothesen für metallische Werkstoffe. Konstruktion 34, 305–310 (1982)Google Scholar
  95. 95.
    Issler, L., Ruoß, H., Häfele, P.: Festigkeitslehre - Grundlagen. Springer, Berlin (2006)Google Scholar
  96. 96.
    Ivlev, D.D.: On the development of a theory of ideal plasticity. J. Appl. Math. Mech. 22(6), 1221–1230 (1958)MathSciNetMATHGoogle Scholar
  97. 97.
    Ivlev, D.D.: The theory of fracture of solids. J. Appl. Math. Mech. 23(3), 884–895 (1959)MathSciNetMATHGoogle Scholar
  98. 98.
    Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojstvach uslovij plastichnosti). J. Appl. Math. Mech. 5, 1439–1446 (1960)Google Scholar
  99. 99.
    Ivlev, D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnosti). Nauka, Moscow (1966)Google Scholar
  100. 100.
    Ivlev, D.D.: Theory of Limit State and Ideal Plasticity (in Russ.: Teorija predel’nogo sostojanija i ideal’noj plastichnosti). Voronezhskij Gosudarstvennyj Universitet, Voronezh (2005)Google Scholar
  101. 101.
    Kłębowski, Z.: Obecny stan wytrzymałościowego obliczenia materiałów o własnościach uogólnionych; uogólnione obliczenie osiowo symetrycznego cienkościennego naczynia pod ciśnieniem. Przegląd Techniczny 11, 7–31 (1934)Google Scholar
  102. 102.
    Ko, W.L.: Application of the finite elastic theory to the behavior of rubberlike materials. Ph.D. thesis, California Institute of Technology, Pasadena (1963)Google Scholar
  103. 103.
    Kolupaev, V.A.: 3D-Creep Behaviour of Parts Made of Non-Reinforced Thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (2006)Google Scholar
  104. 104.
    Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Mao-Hong Yu to plastics (in German: Anwendung der Unified Strength Theory (UST) von Mao-Hong Yu auf unverstärkte Kunststoffe. In: Grellmann, W. (ed.) Martin-Luther-Universität Halle-Wittenberg, vol. 12, pp. 320–339. Merseburg, Tagung Deformations- und Bruchverhalten von Kunststoffen (2009)Google Scholar
  105. 105.
    Kolupaev, V.A., Altenbach, H.: Considerations on the unified strength theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch. Ingenieurwes. 74(3), 135–166 (2010)Google Scholar
  106. 106.
    Kolupaev, V.A., Altenbach, H.: Consistent view of generalised yield surfaces. In: Khan, A.S. (ed.) 18th International Symposium on Plasticity & Its Current Applications—Non-linear Response of Conventional & Advanced Materials, and Multi-scale Modeling, pp. 76–78. Neat Press, Fulton MD (2011)Google Scholar
  107. 107.
    Kolupaev, V.A., Bolchoun, A.: Combined yield and fracture criteria (in German: Kombinierte Fließ- und Grenzbedingungen). Forsch. Ingenieurwes. 72(4), 209–232 (2008)Google Scholar
  108. 108.
    Kolupaev, V.A., Kraatz, A., Moneke, M., Bolchoun, A.: Description of the multiaxial creep for hard foams (in German: Beschreibung der mehraxialen Kriechphänomene bei Hartschaumstoffen). Kautschuk, Gummi, Kunststoffe 59(1–2), 17–27 (2006)Google Scholar
  109. 109.
    Kolupaev, V.A., Bolchoun, A., Moneke, M.: Computation of the Poisson’s ratio for the hardening of thermoplastics (in German: Ermittlung der Querkontraktionszahl bei der Verfestigung von Thermoplasten). In: Grellmann, W. (ed.) Martin-Luther-Universität Halle-Wittenberg, vol. 11, pp. 375–385. Merseburg, Tagung Deformations- und Bruchverhalten von Kunststoffen (2007)Google Scholar
  110. 110.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: New trends in application of strength hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen). Konstruktion 5, 59–66 (2009a)Google Scholar
  111. 111.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Unified representation and evaluation of the strength hypotheses. In: Elboujdaini M., Tyson B., Patnaik P. (eds.) 12th International Conference on Fracture ICF 12, p. 10. Ottawa (2009b)Google Scholar
  112. 112.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Testing of multi-axial strength behavior of hard foams. In: Brémand, F. (ed.) ICEM 14–14th International Conference on Experimental Mechanics, 4–9 July, EPJ Web of Conferences 6, 16003 (2010), 8 p. Poitiers, France (2010)Google Scholar
  113. 113.
    Kolupaev, V.A., Mohr-Matuschek, U., Altenbach. H.: Application of strength hypotheses for POM (in German: Anwendung von Festigkeitshypothesen an POM). In: Radusch H.J., Fiedler L. (eds.) 14. International Scientific Conference on Polymeric Materials P.2010, 15. - 17. September, Martin-Luther-Universität Halle-Wittenberg, p. 12. Halle (Saale) (2010b)Google Scholar
  114. 114.
    Kolupaev, V.A., Bolchoun, A., Altenbach. H.: Strength hypothesis applied to hard foams. Appl. Mech. Mater. (Advances in Experimental Mechanics VIII) 70, 99–104 (2011)Google Scholar
  115. 115.
    Kolupaev, V.A., Yu, M.H., Altenbach, H.: Visualisation of the unified strength theory. Arch. Appl. Mech. (2013a). doi: 10.1007/s00419-013-0735-8
  116. 116.
    Kolupaev, V.A., Yu, M.H., Altenbach, H.: Yield criteria of hexagonal symmetry in the \(\pi \)-plane. Acta Mech. (2013b). doi: 10.1007/s00707-013-0830-5
  117. 117.
    Koval’chuk, B.I.: On the criterion for limit state of some hull steels under complex loading states at normal and above-normal temperatures (in Russ.: O kriterii predel’nogo sostojanija nekotorich korpusnich stalej v uslovijach slozhnogo naprjazhennogo sostojanija pri kompatnoj i povishennich temperaturach). Problemi Prochnosti 5, 10–15 (1981)Google Scholar
  118. 118.
    Kuhn, P.: Grundzüge einer allgemeinen Festigkeitshypothese, Auszug aus Antrittsvorlesung des Verfassers vom 11. Juli, : Vom Konstrukteur und den Festigkeitshypothesen. Inst. für Maschinenkonstruktionslehre, Karlsruhe (1980)Google Scholar
  119. 119.
    Kunz, J., Michaeli, W., Herrlich, N., Land, W.: Kunststoffpraxis: Konstruktion. WEKA Media GmbH & Co, KG, Kissing (2002)Google Scholar
  120. 120.
    Lebedev, A.A.: Experimental study of long-term strength of chromium-nickel steel in biaxial tension (in Russ.: Eksperimental’nie issledovanija dlitel’noj prochnosti chromnikelevoj stali v uslovijakh dvustoronnego rastjazhenija). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 3, pp. 77–83 . Naukova Dumka, Kiev (1965a)Google Scholar
  121. 121.
    Lebedev, A.A.: Generalized criterion for the fatigue strength (in Russ.: Obobshennij kriterij dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 3, pp. 69–76. Naukova Dumka, Kiev (1965b)Google Scholar
  122. 122.
    Lebedev, A.A.: On a possible combination of a yield criterion with a criterion for brittle failure (in Russ.: O vozmozhnom sovmeshenii uslovij plastichnosti i khrupkogo razrushenija). Prikladnaja. Mechanika 4(8), 85–93 (1968)Google Scholar
  123. 123.
    Lebedev, A.A., Panchin, V.V.: Geometrical interpretation of the generalized criterion for the fatigue strength (in Russ.: Geometricheskaja interpretazija obobshennogo kriterija dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 4, pp. 187–192. Naukova Dumka, Kiev (1967)Google Scholar
  124. 124.
    Lebedev, A.A., Koval’chuk, B.I., Giginjak, F.F., Lamashevsky, V.P.: Handbook of Mechanical Properties of Structural Materials at a Complex Stress State. Begell House, New York (2001)Google Scholar
  125. 125.
    Leckie, F.A., Hayhurst, D.R.: Constitutive equations for creep rupture. Acta Metall. 25, 1059–1070 (1977)Google Scholar
  126. 126.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  127. 127.
    Leon, A.: Über die Rolle des Trennbruches im Rahmen der Mohrschen Anstrengungshypothese. Der Bauingenieur 31(32), 318–321 (1934)Google Scholar
  128. 128.
    Lequeu, P.H., Gilormini. P., Montheillet. F., Bacroix, B., Jonas, J.J.: Yield surfaces for textured polycrystals. Acta Metall. 35(2), 439–451, 1159–1174 (1987)Google Scholar
  129. 129.
    Lüpfert, H.P.: Beurteilung der statischen Festigkeit und Dauerfestigkeit metallischer Werkstoffe bei mehrachsiger Beanspruchung. Deutscher Verlag für Grundstoffindustrie, Leipzig (1994)Google Scholar
  130. 130.
    Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)Google Scholar
  131. 131.
    Maitra, M., Majumdar, K., Das, A.: Unified plastic yield criterion for ductile solids. AIAA Journal 11(10), 1428–1429 (1973)Google Scholar
  132. 132.
    Mālmeisters, A., Tamužs, V., Teters, G.: Mechanik der Polymerwerkstoffe. Akademie-Verlag, Berlin (1977)Google Scholar
  133. 133.
    Marciniak, Z.: Graphical representation of states of stress and strain. Arch. Mech. 3, 261–274 (1971)Google Scholar
  134. 134.
    Mariotte, M.: Traité du mouvement des eaux et des autres corps fluides. J. Jambert, Paris (1700)Google Scholar
  135. 135.
    Mendelson, A.: Plasticity: Theory and Application. Krieger, Malabar, Fla (1968)Google Scholar
  136. 136.
    Mendera, Z.: Wytężenie spoiny czołowej w interpretacji powierzchni granicznych. Przegla̧d Spawalnictwa SIMP XVIII(1), 6–13 (1966)Google Scholar
  137. 137.
    Miles, M., Mills, N.: The yield locus of polycarbonate. J. Polym. Sci.: Polym. Lett. Ed. 11(9), 563–568 (1973)Google Scholar
  138. 138.
    Mirolyubov, I.N.: On the generalization of the strengt theory based on the octaedral stresses in the case of brittle materials (in Russ.: K voprosu ob obobshenii teorii prochnosti oktaedticheskikh kasatelnyh naprjazhenij na khrupkie materialy). Trudy Leningradskogo Technologicheskogo Instituta pp 42–52 (1953)Google Scholar
  139. 139.
    von Mises, R.: Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse pp. 589–592 (1913)Google Scholar
  140. 140.
    von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. ZAMM 8, 161–185 (1928)MATHGoogle Scholar
  141. 141.
    Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Z VDI 45, 1524–1530 (1900a)Google Scholar
  142. 142.
    Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Z VDI 46, 1572–1577 (1900b)Google Scholar
  143. 143.
    Mohr, O.: Abhandlungen aus dem Gebiete der technischen Mechanik. Wilhelm & Sohn, Berlin (1914)Google Scholar
  144. 144.
    Müller, R.: Theoretische Untersuchung des Einflusses der Spannungskonzentration durch Kerben bei mehrachsiger Belastung. Ph.D., TH Karlsruhe, Karlsruhe (1987)Google Scholar
  145. 145.
    Murzewski, J., Mendera, Z.: Yield surface of steel determined by semi-empirical method. Bulletin de L’Academie Polonaise des Sciences, Serie des sciences, techniques XI(7), 35–42 (1963)Google Scholar
  146. 146.
    Navier, M.: De la resistance des corps solides. Dunand, Paris (1864)Google Scholar
  147. 147.
    Nayak, G., Zienkiewicz, O.: Convenient form of stress invariants for plasticity. In: Proceedings of the ASCE Journal of the Structural Division, vol. 98, pp. 949–953 (1972)Google Scholar
  148. 148.
    Novozhilov, V.: On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov). Prikladnaja Matematika i Mechanika XV(6), 709–722 (1951a)Google Scholar
  149. 149.
    Novozhilov, V.V.: On the connection between stresses and strains in a nonlinear-elastic continuum (in Russ.: O svjazi mezhdu naprjazhenijami i deformazijami v nelinejno-uprugoj srede). Prikladnaja Matematika i Mechanika XV(2):183–194 (1951b)Google Scholar
  150. 150.
    Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)Google Scholar
  151. 151.
    Pae, K.D.: The macroscopic yielding behaviour of polymers in multiaxial stress fields. J. Mater. Sci. 12, 1209–1214 (1977)Google Scholar
  152. 152.
    Papageorgiou, M.: Optimierung: statische, dynamische, stochastische Verfahren für die Anwendung. Oldenbourg, München (1996)MATHGoogle Scholar
  153. 153.
    Paul, B.: A modification of the Coulomb-Mohr theory of fracture. J. Mater. Sci. Ser E 28(2), 259–268 (1961)Google Scholar
  154. 154.
    Paul, B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. II, pp. 313–496. Academic Press, New York (1968)Google Scholar
  155. 155.
    Pełczyński, T.: Wpływ stanu napięcia na przejście materiału w stan plastyczny. Przeglad Mechaniczny 7, 204–208 (1951)Google Scholar
  156. 156.
    Pisarenko, G.S., Lebedev. A.A.: Deformation and Fracture of Materials under Combined Stress (in Russ.: Soprotivlenie materialov deformirovaniju i razrusheniju pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1969)Google Scholar
  157. 157.
    Pisarenko, G.S., Lebedev, A.A.: Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)Google Scholar
  158. 158.
    Pęcherski, R.B., Szeptyński, P., Nowak, M.: An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor. Arch. Metall. Mater. 56(2), 503–508 (2011)Google Scholar
  159. 159.
    Poncelet, J.V.: Mécanique Industrielle. Meline, Bruxelles (1839)Google Scholar
  160. 160.
    Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. Ser. A 82(557), 546–559 (1909)MATHGoogle Scholar
  161. 161.
    Poynting, J.H.: On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel. Proc. R. Soc. Lond. Ser. A 86(590), 534–561 (1912)MATHGoogle Scholar
  162. 162.
    Poynting, J.H., Thomson, J.J.: A Text-Book of Physics, Properties of Matter. Charles Griffin & Company, London (1927)Google Scholar
  163. 163.
    Prager, W., Hodge, P.: Theorie ideal plastischer Körper. Springer, Wien (1954)MATHGoogle Scholar
  164. 164.
    Raghava, R., Caddell, R., Yeh, G.: The macroscopic yield behaviour of polymers. J. Mater. Sci. 8(2), 225–232 (1973)Google Scholar
  165. 165.
    Raniecki, B., Mróz, Z.: Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting sd effect. Acta Mech. 195, 81–102 (2008)MATHGoogle Scholar
  166. 166.
    Rankine, W.J.M.: Manual of Applied Mechanics. Griffin, London (1876)Google Scholar
  167. 167.
    Reckling, K.: Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer, Berlin (1967)MATHGoogle Scholar
  168. 168.
    Reiner, M.: Deformation Strain and Flow. An Elementary Introduction to Rheology. H. K. Lewis & Co. Ltd., London (1960)Google Scholar
  169. 169.
    Reiner, M., Abir, D.: Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics. Jerusalem Academic Press, Jerusalem (1964)MATHGoogle Scholar
  170. 170.
    Résal, J.: Résistance des matériaux. Librairie polytechnique, Baudry & cie., Paris (1898)Google Scholar
  171. 171.
    Reuss, A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. ZAMM 13(5), 356–360 (1933)MATHGoogle Scholar
  172. 172.
    Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. vii. experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A243(865), 251–288 (1951)Google Scholar
  173. 173.
    Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behaviour of ’wet’ clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity, Papers for Conference held in Cambridge, pp. 535–609. University Press, Cambridge March 1968Google Scholar
  174. 174.
    Sähn, S., Göldner, H., Fischer, K.F., Nickel, J.: Bruch- und Beurteilungskriterien in der Festigkeitslehre. Fachbuchverbuchverlag, Leipzig-Köln (1993)Google Scholar
  175. 175.
    de Saint-Venant, B.: Comptes rendus des séances de l’Académie des sciences (1871)Google Scholar
  176. 176.
    Sandel, G.D.: Über die Festigkeitsbedingungen: ein Beitrag zur Lösung der Frage der zulässigen Anstrengung der Konstruktionsmaterialen. Ph.D. thesis, TeH, Stuttgart (1919)Google Scholar
  177. 177.
    Sauter, J.: Neue und alte statische Festigkeitshypothesen. VDI, Reihe 1: Konstruktionstechnik / Maschinenelente Nr. 191, Düsseldorf (1990)Google Scholar
  178. 178.
    Sayir, M.: Zur Fließbedingung der Plastizitätstheorie. Ing. Arch. 39, 414–432 (1970)MATHGoogle Scholar
  179. 179.
    Schleicher, F.: Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung). Ztschr f Math und Mech 6(3), 199–216 (1926)MATHGoogle Scholar
  180. 180.
    Schleicher, F.: Über die Sicherheit gegen Überschreiten der Fliessgrenze bei statischer Beanspruchung. Der Bauingenieur 9(15), 253–261 (1928)Google Scholar
  181. 181.
    Schlimmer, M.: Zeitabhängiges mechanisches Werkstoffverhalten: Grundlagen, Experimente. Rechenverfahren für die Praxis, Springer, Berlin (1984)Google Scholar
  182. 182.
    Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing. Arch. 3(3), 215–235 (1932)MATHGoogle Scholar
  183. 183.
    Schneider, W.: Mikromechanische Betrachtung von Bruchkriterien unidirektional verstärkten Schichten aus Glasfaser\(/\)Kunststoff. Fachbereich Maschinenbau D 17, Technische Hochschule Darmstadt, Darmstadt (1974)Google Scholar
  184. 184.
    Schneider, W.: Versagenskriterien für Kunststoffe unter mehrachsiger Kurzzeitbeanspruchung. In: Belastungsgrenzen von Kunststoff-Bauteilen, pp. 81–105. VDI-Verlag GmbH, Düsseldorf (1975)Google Scholar
  185. 185.
    Schneider, W., Bardenheier, R.: Versagenskriterien für Kunststoffe. Zeitschrift für Werkstofftechnik (J of Materials Technology) 6(8), 269–280 (1975)Google Scholar
  186. 186.
    Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)Google Scholar
  187. 187.
    Schreyer, H.: Smooth limit surfaces for metals, concrete, and geotechnical materials. J. Eng. Mech. 115(9), 1960–1975 (1989)Google Scholar
  188. 188.
    Schur, I., Grunsky, H.: Vorlesungen über Invariantentheorie: Die Grundlehren der mathematischen Wissenschaften in Einzelndarstellungen. Springer, Berlin (1968)Google Scholar
  189. 189.
    Schwartz, R., Dugger, J.: Shear strength of plastic materials. Mod. Plast. 21, 117–121, 164, 166 (1944)Google Scholar
  190. 190.
    Schwarzl, F., Stavermann, A.J.: Bruchspannung und festigkeit von hochpolymeren. In: Stuart, H. (ed.) Die Physik der Hochpolymeren: Theorie und Molekulare Deutung Technologischer Eigenschaften von Hochpolymeren Werkstoffen, vol. 4, pp. 165–176. Springer, Berlin (1964)Google Scholar
  191. 191.
    Sdobyrev, V.P.: Criterion for the long term strength of some heat-resistant alloys at a multiaxial loading (in Russ.: Kriterij dlitelnoj prochnosti dlja nekotorykh zharoprochnykh splavov pri slozhnom naprjazhennom sostojanii). Izvestija Akademii Nauk SSSR, Otdelenie tekhnicheskikh Nauk, Mechanika i Mashinostroenie 6, 93–99 (1959)Google Scholar
  192. 192.
    Shanley, F.R.: Strength of Materials. McGraw-Hill, New York (1957)Google Scholar
  193. 193.
    Shesterikov, S.A.: On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja matematika i mechanika, Rossijskaja Akademija Nauk 24(3), 412–415 (1960)Google Scholar
  194. 194.
    Skrzypek, J.J.: Plasticity and Creep: Theory. CRC Press, Boca Raton, Examples and Problems (1993)MATHGoogle Scholar
  195. 195.
    Sokolovsky, V.V.: Theory of Plasticity (in Russ.: Teorija plastichnosti). Gos. izd. tekhn.-teor. literatury, Moscow (1950)Google Scholar
  196. 196.
    Stadler, W.: Multicriteria Optimization in Engineering and the Sciences. Mathematical Concepts and Methods in Science and Engineering, vo. 37. Plenum Press, New York (1988)Google Scholar
  197. 197.
    Stepin, P.A.: Strength of Materials. Gordon & Breach, New York (1963)Google Scholar
  198. 198.
    Sternstein, S., Ongchin, L.: Yield criteria for plastic deformation of glassy high polymers in general stress fields. Div. Polym. Chem. 10, 1117–1121 (1969)Google Scholar
  199. 199.
    Stockton, F.D., Drucker, D.C.: Fitting mathematical theory of plasticity to experimental results. J. Colloid Sci. 5(3), 239–250 (1950)Google Scholar
  200. 200.
    Swift, H.W.: Plastic strain in an isotropic strain hardening material. Engineering: for innovators in technology, manufacturing and management 163, 381–389 (1946)Google Scholar
  201. 201.
    Tarasenko, I.I.: On the criteria of brittle strength of materials (in Russ.: O kriterijach khrupkoj prochnosti materialov). Sbornik nauchnykh trudov, Leningradskij inzhenerno-stroitelnij institut 26, 161–168 (1957)Google Scholar
  202. 202.
    Theocaris, P.: A general yield criterion for engineering materials, depending on void growth. Meccanica 21(2), 97–105 (1986)MathSciNetGoogle Scholar
  203. 203.
    Thorkildsen, R.: Mechanical behaviour. In: Baer, E. (ed.) Engineering Design for Plastics, pp. 227–399. Reinhold, New York (1964)Google Scholar
  204. 204.
    Timoshenko, S.P.: History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure. McGraw-Hill, New York (1953)Google Scholar
  205. 205.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1987)Google Scholar
  206. 206.
    Timoshenko, S.P., Young, D.H.: Elements of Strength of Materials. D. van Nostrand Company, Princeton (1962)Google Scholar
  207. 207.
    Torre, C.: Einfluss der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Österreichisches Ingenieur-Archiv I(4/5), 316–342 (1947)MathSciNetGoogle Scholar
  208. 208.
    Torre, C.: Grenzbedingung für spröden Bruch und plastisches Verhalten bildsamer Metalle. Österreichisches, Ingenieur-Archiv IV(2):174–189 (1950)Google Scholar
  209. 209.
    Tresca, H.: Mémoire sur l’ecoulement des corps solides. Mémoires Pres par Div Savants 18, 733–799 (1868)Google Scholar
  210. 210.
    Tschoegl, N.W.: Failure surfaces in principial stress space. J. Polym. Sci., Part C: Polym. Symp. 32, 239–267 (1971)Google Scholar
  211. 211.
    Tsvelodub, I.Y.: Stability postulate and its applications in the creep theory for metallic materials (in Russ.: Postulat ustojchivosti i ego prilozhenija v teorii polzuchesti metallicheskich materialov). Institut Gidromechaniki, Novosibirsk (1991)Google Scholar
  212. 212.
    Tsvelodub, I.Y.: Multimodulus elasticity theory. J. Appl. Mech. Technical Phys. 49(1), 129–135 (2008)MathSciNetMATHGoogle Scholar
  213. 213.
    Vesik, S.: Handbook of Strength of Materials (in Russ.: Spravochnik po soprotivleniju materialov). Budivelnik, Kiev (1970)Google Scholar
  214. 214.
    Volkov, S.D.: Basics of the statistical theory of strength (in Russ.: Osnovy statisticheskoj teorii prochnosti). In: Ioffe, A.F., Kurdjymov, G.B., Zhurkov, S.N. (eds.) Nekotorye problemy prochnosti tverdogo tela, Izdatel’stvo Akademii Nauk SSSR, pp. 325–333. Leningrad, Moscow (1959)Google Scholar
  215. 215.
    Wack, B.: The torsion of a tube (or a rod): General cylindrical kinematics and some axial deformation and ratchet measurements. Acta Mech. 80(1), 39–59 (1989)Google Scholar
  216. 216.
    Wang, D.A., Pan, J.: A non-quadratic yield function for polymeric foams. Int. J. Plast. 22(3), 434–458 (2006)MathSciNetMATHGoogle Scholar
  217. 217.
    Weigler, H., Becker, G.: Über das Bruch- und Verformungsverhalten von Beton bei mehrachsiger Beanspruchung. Der Bauingenieur 36(10), 390–396 (1961)Google Scholar
  218. 218.
    Westergaard, H.M.: On the resitance of ductile materials to combined stress in two or three directions perpendicular to one another. J. Franklin Inst. 189, 627–640 (1920)Google Scholar
  219. 219.
    Williams, J.G.: Stress Analysis of Polymers. Longman, London (1973)Google Scholar
  220. 220.
    Yagn, Y.I.: New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestnik inzhenerov i tekhnikov 6, 237–244 (1931)Google Scholar
  221. 221.
    Yagn, Y.I.: Strength of Materials: Theory and Problems (in Russ.: Soprotivlenie materialov: teorja i zadachnik). Kubuch, Leningrad (1933)Google Scholar
  222. 222.
    Yu, M.H.: General behaviour of isotropic yield function (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp 1–11 (1961)Google Scholar
  223. 223.
    Yu, M.H.: Brittle fracture and plastic yield criterion (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp 1–25 (1962)Google Scholar
  224. 224.
    Yu, M.H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(1), 71–74 (1983a)Google Scholar
  225. 225.
    Yu, M.H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(11), 845–846 (1983b)Google Scholar
  226. 226.
    Yu, M.H.: Researches on the twin shear stress strength theory (in Chinese). Xi’an Jiaotong University Press, Xi’an (1988)Google Scholar
  227. 227.
    Yu, M.H.: Engineering Strength Theory (in Chinese). Higher Education Press, Beijing (1999)Google Scholar
  228. 228.
    Yu, M.H.: Advances in strength theories for materials under complex stress state in the 20th century. Appl. Mech. Rev. 55(5), 169–218 (2002)Google Scholar
  229. 229.
    Yu, M.H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)MATHGoogle Scholar
  230. 230.
    Yu, M.H., He, L., Song, L.: Twin shear stress theory and its generalization. Scientia Sinica, Series A-Mathematical, Physical, Astronomical and Technical Sciences 28(11), 1174–1183 (1985)Google Scholar
  231. 231.
    Zawadzki, J.: Ciśnienie zredukowane jako jeden z parametrów wytężenia (Przyrost właściwej energii swobodnej jako miara wytężenia). Rozprawy Inzynierskie LXXIII, 358–398 (1957)Google Scholar
  232. 232.
    Ziegler, H.: Zum plastischen Potential der Bodenmechanik. Z f angew Math und Phys 20, 659–675 (1969)MATHGoogle Scholar
  233. 233.
    Zienkiewicz, O., Pande, G.: Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Gudehus, G. (ed.) Finite Elements in Geomechanics, pp. 179–198. John Wiley, London, New York (1977)Google Scholar
  234. 234.
    Źyczkowski, M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ, Warszawa (1981)MATHGoogle Scholar
  235. 235.
    Zyczkowski, M.: Discontinuous bifurcations in the case of the Burzyński-Torre yield condition. Acta Mech. 132(1), 19–35 (1999)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Alexandre Bolchoun
    • 2
  • Vladimir A. Kolupaev
    • 3
  1. 1.Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universtät MagdeburgMagdeburgGermany
  2. 2.Abteilung Werkstoffe und BauteileFraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBFDarmstadtGermany
  3. 3.Deutsches Kunststoff-Institut (DKI)DarmstadtGermany

Personalised recommendations