– Mastering Left and Right – Different Approaches to a Problem That Is Not Straight Forward

  • André van Delden
  • Till Mossakowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8077)

Abstract

Reasoning over spatial descriptions involving relations that can be described as left, right and inline has been studied extensively during the last two decades. While the fundamental nature of these relations makes reasoning about them applicable to a number of interesting problems, it also makes reasoning about them computationally hard. The key question of whether a given description using these relations can be realized is as hard as deciding satisfiability in the existential theory of the reals. In this paper we summarize the semi-decision procedures proposed so far and present the results of a random benchmark illustrating the relative effectiveness and efficiency of these procedures.

Keywords

Left-Right Distinction Qualitative Spatial Reasoning Oriented Matroid Consistency Realizability Semi-Decision Procedure Benchmark 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altshuler, A., Bokowski, J., Steinberg, L.: The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes. Discrete Mathematics 31(2), 115–124 (1980)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Björner, A.: Oriented matroids. Encyclopedia of mathematics and its applications. Cambridge University Press (1999)Google Scholar
  3. 3.
    Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with applications to verification. Springer (2007)Google Scholar
  4. 4.
    Condotta, J.F., Saade, M., Ligozat, G.: A Generic Toolkit for n-ary Qualitative Temporal and Spatial Calculi. In: TIME 2006: Proceedings of the Thirteenth International Symposium on Temporal Representation and Reasoning, pp. 78–86. IEEE Computer Society (2006)Google Scholar
  5. 5.
    Dechter, R.: From Local to Global Consistency. Artificial Intelligence 55, 87–108 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Delafontaine, M., Cohn, A.G., Van de Weghe, N.: Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5), 5187–5196 (2011)CrossRefGoogle Scholar
  7. 7.
    Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial reasoning about relative position. In: Proceedings of the Workshop on Spatial and Temporal Reasoning at ECAI 2004 (2004)Google Scholar
  8. 8.
    Goodman, J.E., Pollack, R.: Proof of Grünbaum’s conjecture on the stretchability of certain arrangements of pseudolines. Journal of Combinatorial Theory, Series A 29(3), 385–390 (1980)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lücke, D., Mossakowski, T.: A much better polynomial time approximation of consistency in the lr calculus. In: Proceedings of the 5th Starting AI Researchers’ Symposium, pp. 175–185. IOS Press, Amsterdam (2010)Google Scholar
  10. 10.
    Lücke, D., Mossakowski, T., Wolter, D.: Qualitative reasoning about convex relations. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 426–440. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Moratz, R., Lücke, D., Mossakowski, T.: A condensed semantics for qualitative spatial reasoning about oriented straight line segments. Artificial Intelligence 175(16-17), 2099–2127 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction on adjustable levels of granularity. CoRR (2010)Google Scholar
  13. 13.
    Nieto, J.A.: Chirotope concept in various scenarios of physics. Revista Mexicana de Fisica 51, 5 (2005)Google Scholar
  14. 14.
    Richter-Gebert, J.: On the realizability problem of combinatorial geometries–decision methods. TH Darmstadt (1992)Google Scholar
  15. 15.
    Richter-Gebert, J., Ziegler, G.: Oriented Matroids, ch. 6, 2nd edn. Discrete Mathematics and Its Applications, pp. 129–151. Chapman and Hall/CRC (2004)Google Scholar
  16. 16.
    Richter-Gebert, J.: Mechanical theorem proving in projective geometry (1993)Google Scholar
  17. 17.
    Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Scivos, A., Nebel, B.: The Finest of its Class: The Natural, Point-Based Ternary Calculus \(\mathcal{LR}\) for Qualitative Spatial Reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 283–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 39–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Wolter, D., Lee, J.: Qualitative reasoning with directional relations. Artificial Intelligence 174(18), 1498–1507 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wolter, D.: Analyzing qualitative spatio-temporal calculi using algebraic geometry. Spatial Cognition & Computation 12(1), 23–52 (2011)CrossRefGoogle Scholar
  22. 22.
    Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6(1), 49–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • André van Delden
    • 1
  • Till Mossakowski
    • 1
    • 2
  1. 1.Research Center on Spatial Cognition (SFB/TR 8)University of BremenGermany
  2. 2.DFKI GmbHBremenGermany

Personalised recommendations