Aesthetic Patterns from the Perturbed Orbits of Discrete Dynamical Systems

  • Krzysztof Gdawiec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8104)

Abstract

The aim of this paper is to present some modifications of the orbits generation algorithm of discrete dynamical systems. The first modification is based on introduction of a perturbation mapping in the standard Picard iteration used in the orbit generation algorithm. The perturbation mapping is used to alter the orbit during the iteration process. The second modification combines the standard Picard iteration with the iteration which uses the perturbation mapping. The obtained patterns have unrepeatable structure and aesthetic value. They can be used for instance as textile patterns, ceramics patters or can be used in jewellery design.

Keywords

dynamical system orbit perturbation mapping aesthetic pattern 

References

  1. 1.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying Aesthetics in Photographic Images Using a Computational Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Gdawiec, K., Kotarski, W., Lisowska, A.: Automatic Generation of Aesthetic Patterns with the Use of Dynamical Systems. In: Bebis, G., et al. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 691–700. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Gumowski, I., Mira, C.: Recurrences and Discrete Dynamic Systems. Springer, New York (1980)MATHGoogle Scholar
  4. 4.
    Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific, Singapore (2009)Google Scholar
  5. 5.
    Lu, S., Jaffer, A., Jin, X., Zhao, H., Mao, X.: Mathematical Marbling. IEEE Computer Graphics and Applications 32(6), 26–35 (2012)CrossRefGoogle Scholar
  6. 6.
    Martin, B.: Graphic Potential of Recursive Functions. In: Landsdwon, J., Earnshaw, R.A. (eds.) Computers in Art, Design and Animation, pp. 109–129. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  7. 7.
    Morozov, A.D., Dragunov, T.N., Boykova, S.A., Malysheva, O.V.: Invariant Sets for Windows. World Scientific, Singapore (1999)Google Scholar
  8. 8.
    Naud, M., Richard, P., Chapeau-Blondeau, F., Ferrier, J.L.: Automatic Generation of Aesthetic Images for Computer-assisted Virtual Fashion Design. In: Proceedings 10th Generative Art Conference, Milan, Italy (2007)Google Scholar
  9. 9.
    Osipenko, G.: Dynamical Systems, Graphs, and Algorithms. Springer, New York (2007)MATHGoogle Scholar
  10. 10.
    Pang, W., Hui, K.C.: Interactive Evolutionary 3D Fractal Modeling. Visual Computer 26(12), 1467–1483 (2010)CrossRefGoogle Scholar
  11. 11.
    Peters, M.: HOP – Fractals in Motion, http://www.mpeters.de/mpeweb/hop/
  12. 12.
    Rost, R.J., Licea-Kane, B.: OpenGL Shading Language, 3rd edn. Addison-Wesley, Boston (2010)Google Scholar
  13. 13.
    Sen, A.K.: A Product-Delay Algorithm for Graphic Design. Computers & Graphics 22(6), 759–764 (1998)CrossRefGoogle Scholar
  14. 14.
    Wannarumon, S., Bohez, E.L.J.: A New Aesthetic Evolutionary Approach for Jewelry Design. Computer-Aided Design & Applications 3(1-4), 385–394 (2006)CrossRefGoogle Scholar
  15. 15.
    Wannarumon, S., Unnanon, K., Bohez, E.L.J.: Intelligent Computer System for Jewelry Design Support. Computer-Aided Design & Applications 1(1-4), 551–558 (2004)CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Bauckhage, C., Thurau, C.: The Good, the Bad, and the Ugly: Predicting Aesthetic Image Labels. In: Proceedings 20th International Conference on Pattern Recognition, Istanbul, Turkey, pp. 1586–1589 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Krzysztof Gdawiec
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaPoland

Personalised recommendations