Synthetic Social Network Based on Competency-Based Description of Human Resources

  • Štěpán Kuchař
  • Jan Martinovič
  • Pavla Dráždilová
  • Kateřina Slaninová
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8104)


The approach presented in this paper is based on the field of human resource management with the aim to extend the analysis of human resources by a graph theory perspective with an output representation by synthetic social networks. Further analysis of human resources is focused on their division into communities with similar competencies and skills. We used betweenness concept of centrality for finding important persons in the network that share their skills and competencies with workers in other communities and can therefore serve as contact persons between communities with different skills. This method can also be used for suggesting worker team composition based on similarity of workers’ skills for different roles.


Synthetic social network Complex network Human resource management Competency model 


  1. 1.
    Newman, M.E.J.: Networks: An Introduction. Osford University Press (2010)Google Scholar
  2. 2.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks (February 2004)Google Scholar
  3. 3.
    Musiałl, K., Kazienko, P.: Social networks on the internet. World Wide Web 1, 1–42 (2012)Google Scholar
  4. 4.
    Costa, L., Rodrigues, F., Travieso, G., Boas, P.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007)CrossRefGoogle Scholar
  5. 5.
    Bisgin, H., Agarwal, N., Xu, X.: Investigating homophily in online social networks. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2010, pp. 533–536. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  6. 6.
    Granovetter, M.S.: The Strength of Weak Ties. American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  7. 7.
    Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1, 215–239 (1979)CrossRefGoogle Scholar
  8. 8.
    Garton, L., Haythornthwaite, C., Wellman, B.: Studying online social networks. Journal of Computer-Mediated Communication 3(1) (1997)Google Scholar
  9. 9.
    Kazienko, P., Musial, K., Kukla, E.z., Kajdanowicz, T., Bródka, P.: Multidimensional social network: Model and analysis. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS (LNAI), vol. 6922, pp. 378–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Knoke, D., Yang, S.: Social network analysis. Quantitative applications in the social sciences, vol. 154. Sage (2008)Google Scholar
  11. 11.
    Knoke, D., Yang, S.: Social Network Analysis, 2nd edn. Sage Publications, Inc. (2008)Google Scholar
  12. 12.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Newman, M., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of Networks (Princeton Studies in Complexity). Princeton University Press, Princeton (2006)Google Scholar
  14. 14.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 69(2 pt. 2), 16 (2004)Google Scholar
  16. 16.
    Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with wigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23, 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Drázdilová, P., Martinovic, J., Slaninová, K.: Spectral clustering: Left-right-oscillate algorithm for detecting communities. In: ADBIS Workshops, pp. 285–294 (2012)Google Scholar
  19. 19.
    Dreyfus, S.E., Dreyfus, H.L.: A five-stage model of the mental activities involved in directed skill acquisition. Technical report, DTIC Document (1980)Google Scholar
  20. 20.
    Ennis, M.R.: Competency models: a review of the literature and the role of the employment and training administration (ETA). US Department of Labor (2008)Google Scholar
  21. 21.
    Sinnott, G., Madison, G., Pataki, G.: Competencies: Report of the competencies workgroup, workforce and succession planning work groups (September 2002)Google Scholar
  22. 22.
    SFIA Foundation: Framework reference SFIA version 4G (2010)Google Scholar
  23. 23.
    Berry, M.W.: Survey of text mining: clustering, classification, and retrieval, vol. 1. Springer-Verlag New York Inc. (2004)Google Scholar
  24. 24.
    Kuchar, S., Martinovic, J.: Human Resource Allocation in Process Simulations Based on Competency Vectors. AISC, vol. 188. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Fitzpatrick, E.L., Askin, R.G.: Forming effective worker teams with multi-functional skill requirements. Computers & Industrial Engineering 48(3), 593–608 (2005)CrossRefGoogle Scholar
  26. 26.
    Karduck, A., Sienou, A.: Forming the optimal team of experts for collaborative work. In: Bramer, M., Devedzic, V. (eds.) Artificial Intelligence Applications and Innovations, IFIP 18th World Computer Congress, TC12 First International Conference on Artificial Intelligence Applications and Innovations (AIAI 2004), August 22-27, pp. 267–278. Kluwer, Toulouse (2004)Google Scholar
  27. 27.
    Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge and collaboration. Expert Systems with Applications 36(5), 9121–9134 (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Štěpán Kuchař
    • 1
  • Jan Martinovič
    • 2
  • Pavla Dráždilová
    • 2
  • Kateřina Slaninová
    • 2
  1. 1.IT4InnovationsVŠB - Technical University of OstravaOstravaCzech Republic
  2. 2.Department of Computer ScienceVŠB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations