Mahalanobis Distance-Based Algorithm for Ellipse Growing in Iris Preprocessing

  • Krzysztof Misztal
  • Jacek Tabor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8104)


We introduce a new algorithm for ellipse recognition. The approach uses Mahalanobis distance and statistical and analytical properties of circular and elliptical objects. At first stage of the algorithm the starting configuration of initial ellipse is defined. Next we apply a condition which describes how much the shape is ellipse-like on the boundary points.

The algorithm can be easily applied to detection of elliptical objects also on grayscale images. Moreover, we discuss the improvement in iris image preprocessing.


Mahalanobis distance ellipse growing ellipse detection pattern recognition feature extraction 


  1. 1.
    Nguyen, T.M., Ahuja, S., Wu, Q.J.: A real-time ellipse detection based on edge grouping. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 3280–3286. IEEE (2009)Google Scholar
  2. 2.
    Greggio, N., Manfredi, L., Laschi, C., Dario, P., Carrozza, M.C.: Robotcub implementation of real-time least-square fitting of ellipses. In: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, pp. 174–181. IEEE (2008)Google Scholar
  3. 3.
    Takegami, T., Gotoh, T., Ohyama, G.: An algorithm for model-based stable pupil detection for eye tracking system. Systems and Computers in Japan 35, 21–31 (2004)CrossRefGoogle Scholar
  4. 4.
    Jain, V., Learned-Miller, E.: Fddb: A benchmark for face detection in unconstrained settings. University of Massachusetts, Amherst, Tech. Rep. UM-CS-2010-009 (2010)Google Scholar
  5. 5.
    Jin, Y., Qiu, K., Dai, Y., Xiao, G., Deng, H.: An improved handwritten Chinese character recognition based on localized ellipse model. In: 2010 3rd International Congress on Image and Signal Processing (CISP), vol. 4, pp. 1803–1807. IEEE (2010)Google Scholar
  6. 6.
    Wong, C., Lin, S., Ren, T., Kwok, N.: A survey on ellipse detection methods. In: 2012 IEEE International Symposium on Industrial Electronics (ISIE), pp. 1105–1110. IEEE (2012)Google Scholar
  7. 7.
    Illingworth, J., Kittler, J.: A survey of the hough transform. Computer Vision, Graphics, and Image Processing 44, 87–116 (1988)CrossRefGoogle Scholar
  8. 8.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 476–480 (1999)CrossRefGoogle Scholar
  9. 9.
    Prasad, D.K., Leung, M.K.: Methods for ellipse detection from edge maps of real images. Machine Vision-Applications and Systems, 135–162 (2012)Google Scholar
  10. 10.
    Chiang, C.C., Ho, M.C., Liao, H.S., Pratama, A., Syu, W.C.: Detecting and recognizing traffic lights by genetic approximate ellipse detection and spatial texture layouts. International Journal of Innovative Computing, Information and Control 7, 6919–6934 (2011)Google Scholar
  11. 11.
    Dufrenois, F.: Ellipse fitting with uncertainty and fuzzy decision stage for detection. Application in videomicroscopy. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 432–443. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Prasad, D.K., Leung, M.K.: A hybrid approach for ellipse detection in real images. In: Second International Conference on Digital Image Processing, p. 75460I. International Society for Optics and Photonics (2010)Google Scholar
  13. 13.
    Chia, A.S., Rahardja, S., Rajan, D., Leung, M.K.: A split and merge based ellipse detector with self-correcting capability. IEEE Transactions on Image Processing 20, 1991–2006 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mai, F., Hung, Y., Zhong, H., Sze, W.: A hierarchical approach for fast and robust ellipse extraction. Pattern Recognition 41, 2512–2524 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tabor, J., Misztal, K.: Detection of elliptical shapes via cross-entropy clustering. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 656–663. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)CrossRefGoogle Scholar
  17. 17.
    Daugman, J.: New methods in iris recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37, 1167–1175 (2007)CrossRefGoogle Scholar
  18. 18.
    Chun, C.-N., Chung, R.: Iris recognition for iris tilted in depth. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 530–539. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Dorairaj, V., Schmid, N.A., Fahmy, G.: Performance evaluation of non-ideal iris based recognition system implementing global ica encoding. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 3, p. III–285. IEEE (2005)Google Scholar
  20. 20.
    Mahalanobis, P.C.: On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, New Delhi 2, 49–55 (1936)Google Scholar
  21. 21.
    Königsberger, K.: Analysis 2. Springer (2004)Google Scholar
  22. 22.
    Institute of Automation, Chinese Academy of Science: CASIA iris image database (2013),

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Krzysztof Misztal
    • 1
  • Jacek Tabor
    • 2
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland

Personalised recommendations