Advertisement

Managing Structural and Textual Quality of Business Process Models

  • Jan Mendling
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 162)

Abstract

Business process models are increasingly used for capturing business operations of companies. Such models play an important role in the requirements elicitation phase of to-be-created information systems and in as-is analysis of business efficiency. Many process modeling initiatives have grown considerably big in size involving dozens of modelers with varying expertise creating and maintaining hundreds, sometimes thousands of models. One of the roadblocks towards a more effective usage of these process models is the often insufficient provision of quality assurance. The aim of this paper is to give an overview on how empirical research informs structural and textual quality assurance of process models. We present selected findings and show how they can be utilized as a foundation for novel automatic analysis techniques.

Keywords

Business Process Model Textual Quality Activity Label Model Reader Natural Language Processing Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lindland, O., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE Software 11(2), 42–49 (1994)CrossRefGoogle Scholar
  2. 2.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process Models Representing Knowledge for Action: a Revised Quality Framework. European Journal of Information Systems 15(1), 91–102 (2006)CrossRefGoogle Scholar
  3. 3.
    Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of process models: Empirical testing of a quality framework. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 380–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling: Empirical Insights and Recommendations. Information Systems 35(4), 467–482 (2010)CrossRefGoogle Scholar
  5. 5.
    Silver, B.: BPMN Method and Style, with BPMN Implementer’s Guide, 2nd edn. Cody-Cassidy Press (January 2011)Google Scholar
  6. 6.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guidelines (7PMG). Information and Software Technology 52(2), 127–136 (2010)CrossRefGoogle Scholar
  7. 7.
    Allweyer, T.: BPMN 2.0 - Business Process Model and Notation, 2nd edn. Books on Demand GMBH, Norderstedt (2009)Google Scholar
  8. 8.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Information Systems 37(5), 443–459 (2012)CrossRefGoogle Scholar
  9. 9.
    Mendling, J.: Empirical Studies in Process Model Verification. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 208–224. Springer, Heidelberg (2009); Special Issue on Concurrency in Process-Aware Information Systems 2CrossRefGoogle Scholar
  10. 10.
    Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Management Journal 12(2), 249–254 (2006)CrossRefGoogle Scholar
  11. 11.
    Rosemann, M.: Potential pitfalls of process modeling: part b. Business Process Management Journal 12(3), 377–384 (2006)CrossRefGoogle Scholar
  12. 12.
    Sarshar, K., Loos, P.: Comparing the control-flow of EPC and petri net from the end-user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hahn, J., Kim, J.: Why are some diagrams easier to work with? effects of diagrammatic representation on the cognitive integration process of systems analysis and design. ACMTCHI: ACM Transactions on Computer-Human Interaction 6 (1999)Google Scholar
  14. 14.
    Agarwal, R., De, P., Sinha, A.: Comprehending object and process models: An empirical study. IEEE Transactions on Software Engineering 25(4), 541–556 (1999)CrossRefGoogle Scholar
  15. 15.
    Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand and the Accounting Association of Australia and New Zealand, Melbourne, Australia (1997)Google Scholar
  16. 16.
    Recker, J., Rosemann, M., Green, P.F., Indulska, M.: Do ontological deficiencies in modeling grammars matter? MIS Quarterly 35(1), 57–79 (2011)Google Scholar
  17. 17.
    Moody, D.L.: The “physics” of notations: Toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  18. 18.
    Figl, K., Mendling, J., Strembeck, M.: The influence of notational deficiencies on process model comprehension. Journal of the Association for Information Systems (2012) (in press)Google Scholar
  19. 19.
    Rosa, M.L., ter Hofstede, A.H.M., Wohed, P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P.: Managing process model complexity via concrete syntax modifications. IEEE Trans. Industrial Informatics 7(2), 255–265 (2011)CrossRefGoogle Scholar
  20. 20.
    Reijers, H.A., Freytag, T., Mendling, J., Eckleder, A.: Syntax highlighting in business process models. Decision Support Systems 51(3), 339–349 (2011)CrossRefGoogle Scholar
  21. 21.
    Moher, T., Mak, D., Blumenthal, B., Leventhal, L.: Comparing the Comprehensibility of Textual and Graphical Programs: The Case of Petri Nets. In: Cook, C., Scholtz, J., Spohrer, J. (eds.) Empirical Studies of Programmers: Fifth Workshop: Papers Presented at the Fifth Workshop on Empirical Studies of Programmers, December 3-5, pp. 137–161. Ablex Pub. (1993)Google Scholar
  22. 22.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering 2(4), 308–320 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Transaction on Software Engineering 20(6), 476–493 (1994)CrossRefGoogle Scholar
  25. 25.
    Fenton, N., Pfleeger, S.: Software Metrics. A Rigorous and Practical Approach. PWS, Boston (1997)Google Scholar
  26. 26.
    Lee, G., Yoon, J.M.: An empirical study on the complexity metrics of petri nets. Microelectronics and Reliability 32(3), 323–329 (1992)CrossRefGoogle Scholar
  27. 27.
    Nissen, M.: Redesigning reengineering through measurement-driven inference. MIS Quarterly 22(4), 509–534 (1998)CrossRefGoogle Scholar
  28. 28.
    Morasca, S.: Measuring attributes of concurrent software specifications in petri nets. In: METRICS 1999: Proceedings of the 6th International Symposium on Software Metrics, pp. 100–110. IEEE Computer Society, Washington, DC (1999)Google Scholar
  29. 29.
    Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Workflow Handbook 2005, pp. 284–290. Future Strategies, Inc., Lighthouse Point (2005)Google Scholar
  30. 30.
    Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: Proceedings of IEEE International Conference on Services Computing, IEEE SCC 2006, Chicago, USA, September 18-22, pp. 167–173. IEEE Computer Society (2006)Google Scholar
  31. 31.
    Canfora, G., García, F., Piattini, M., Ruiz, F., Visaggio, C.: A family of experiments to validate metrics for software process models. Journal of Systems and Software 77(2), 113–129 (2005)CrossRefGoogle Scholar
  32. 32.
    Aguilar, E.R., García, F., Ruiz, F., Piattini, M.: An exploratory experiment to validate measures for business process models. In: First International Conference on Research Challenges in Information Science, RCIS (2007)Google Scholar
  33. 33.
    Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a Quest for Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    van der Aalst, W.M.P., Lassen, K.: Translating unstructured workflow processes to readable BPEL: Theory and implementation. Information and Software Technology 50(3), 131–159 (2008)CrossRefGoogle Scholar
  36. 36.
    Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of process models to enhance their comprehension. Inf. Syst. 36(5), 881–897 (2011)CrossRefGoogle Scholar
  37. 37.
    Mendling, J., Verbeek, H.M.W., Dongen, B., van der Aalst, W.M.P., Neumann, G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data & Knowledge Engineering 64(1), 312–329 (2008)CrossRefGoogle Scholar
  38. 38.
    Mendling, J.: Metrics for Process Models. LNBIP, vol. 6. Springer, Heidelberg (2008)Google Scholar
  39. 39.
    Reijers, H.A., Mendling, J.: A Study Into the Factors That Influence the Understandability of Business Process Models. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(3), 449–462 (2011)CrossRefGoogle Scholar
  40. 40.
    Mendling, J., Strembeck, M., Recker, J.: Factors of process model comprehension - findings from a series of experiments. Decision Support Systems 53(1), 195–206 (2012)CrossRefGoogle Scholar
  41. 41.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  42. 42.
    Mendling, J., Sánchez-González, L., García, F., Rosa, M.L.: Thresholds for error probability measures of business process models. Journal of Systems and Software 85(5), 1188–1197 (2012)CrossRefGoogle Scholar
  43. 43.
    Hosmer, D., Lemeshow, S.: Applied Logistic Regression, 2nd edn. John Wiley & Sons (2000)Google Scholar
  44. 44.
    Zweig, M., Campbell, G.: Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39(4), 561–577 (1993)Google Scholar
  45. 45.
    Dean, D., Lee, J., Orwig, R., Vogel, D.: Technological support for group process modeling. Journal of Management Information Systems, 43–63 (1994)Google Scholar
  46. 46.
    Rosemann, M., Muehlen, M.: Evaluation of workflow management systems-a meta model approach. Australian Journal of Information Systems 6, 103–116 (1998)Google Scholar
  47. 47.
    Rolland, C.: L’e-lyee: coupling l’ecritoire and lyeeall. Information & Software Technology 44(3), 185–194 (2002)CrossRefGoogle Scholar
  48. 48.
    Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving the design of existing code. Addison-Wesley Professional (1999)Google Scholar
  49. 49.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Computers in Industry 62(5), 467–486 (2011)CrossRefGoogle Scholar
  50. 50.
    Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf. Syst. 37(6), 518–538 (2012)CrossRefGoogle Scholar
  51. 51.
    Rosa, M.L., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., van der Aalst, W.M.P.: Managing process model complexity via abstract syntax modifications. IEEE Trans. Industrial Informatics 7(4), 614–629 (2011)CrossRefGoogle Scholar
  52. 52.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  53. 53.
    Dumas, M., La Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.: Understanding business process models: The costs and benefits of structuredness. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 31–46. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  54. 54.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Jan Mendling
    • 1
  1. 1.Wirtschaftsuniversität WienViennaAustria

Personalised recommendations