Advertisement

Fast Compression of Large-Scale Hypergraphs for Solving Combinatorial Problems

  • Takahisa Toda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8140)

Abstract

We present a fast algorithm to compress hypergraphs into the data structure ZDDs. We furthermore analyze the computational complexity. Our algorithm uses multikey Quicksort given by Bentley and Sedgewick. By conducting experiments with various datasets, we show that our algorithm is significantly faster and requires much smaller memory than an existing method.

Keywords

hypergraph binary decision diagram data compression sort data mining combinatorial problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1, 241–258 (1997)CrossRefGoogle Scholar
  2. 2.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of 30th ACM/IEEE Design Automation Conference (DAC 1993), pp. 272–277 (June 1993)Google Scholar
  3. 3.
    Yoshinaka, R., Kawahara, J., Denzumi, S., Arimura, H., Minato, S.: Counterexample to the long-standing conjecture on the complexity of BDD binary operations. Information Processing Letters 112, 636–640 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proceedings of the 1997 European Conference on Design and Test (EDTC 1997), pp. 224–228 (March 1997)Google Scholar
  5. 5.
    Kiyomi, M., Okamoto, Y., Saitoh, T.: Efficient enumeration of the directed binary perfect phylogenies from incomplete data. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 248–259. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Toda, T.: Hypergraph transversal computation with binary decision diagrams. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 91–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Minato, S.I., Uno, T., Arimura, H.: LCM over ZBDDs: Fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Minato, S.: Finding simple disjoint decompositions in frequent itemset data using Zero-suppressed BDDs. In: Proceedings of IEEE ICDM Workshop on Computational Intelligence in Data Mining, pp. 3–11 (2005)Google Scholar
  9. 9.
    Minato, S.: A fast algorithm for cofactor implication checking and its application for knowledge discovery. In: Proceedings of IEEE 8th International Conference on Computer and Information Technology (CIT 2008), pp. 53–58 (2008)Google Scholar
  10. 10.
    Minato, S.-I.: Symmetric Item Set Mining Based on Zero-Suppressed BDDs. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 321–326. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Toda, T.: Extracting co-occurrence relations from ZDDs. Algorithms 5(4), 654–667 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eiter, T., Makino, K.: Abduction and the dualization problem. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: A brief survey. Discrete Applied Mathematics 156, 2035–2049 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nourine, L., Petit, J.M.: Extending set-based dualization: Application to pattern mining. In: Proceedings of 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 630–635 (August 2012)Google Scholar
  17. 17.
    Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs. In: Proceedings of the Meeting on Algorithm Engineering & Experiments (ALENEX 2013), pp. 1–13 (January 2013)Google Scholar
  18. 18.
    Minato, S., Arimura, H.: Efficient method of combinatorial item set analysis based on Zero-Suppressed BDDs. In: Proceedings of IEEE/IEICE/IPSJ International Workshop on Challenges in Web Information Retrieval and Integration, pp. 3–10 (April 2005)Google Scholar
  19. 19.
    Salleb, A., Vrain, C.: Estimation of the density of datasets with decision diagrams. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 688–697. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Bentley, J., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: Proceedings of 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1997), pp. 360–369 (January 1997)Google Scholar
  21. 21.
    Knuth, D.: The Art of Computer Programming, vol. 4a. Addison-Wesley Professional, New Jersey (2011)Google Scholar
  22. 22.
    Minato, S.: Techniques of BDD/ZDD: Brief history and recent activity. IEICE Transactions on Information and Systems E96-D(7), 1419–1429 (2013)CrossRefGoogle Scholar
  23. 23.
    Daciuk, J., Watson, B.W., Mihov, S., Watson, R.E.: Incremental construction of minimal acyclic finite-state automata. Computational Linguistics 26(1), 3–16 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schoenhage, A., Paterson, M., Pippenger, N.: Finding the median. Journal of Computer and Systems Sciences 13, 184–199 (1976)CrossRefzbMATHGoogle Scholar
  25. 25.
    Floyd, R., Rivest, R.: Expected time bounds for selection. Communications of the ACM 18(3), 165–172 (1975)CrossRefzbMATHGoogle Scholar
  26. 26.
    Toda, T.: ZCOMP: Fast Compression of Hypergraphs into ZDDs, http://kuma-san.net/code/zcomp.html (accessed on July 11, 2013)
  27. 27.
    Bentley, J., Sedgewick, R.: Fast algorithms for sorting and searching strings, http://www.cs.princeton.edu/~rs/strings/ (accessed on April 7, 2013)
  28. 28.
    Buehrer, G., Parthasarathy, S., Tatikonda, S., Kurc, T., Saltz, J.: Toward terabyte pattern mining: an architecture-conscious solution. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2007), pp. 2–12. ACM, New York (2007)CrossRefGoogle Scholar
  29. 29.
    Murakami, K., Uno, T.: Hypergraph dualization repository, http://research.nii.ac.jp/~uno/dualization.html (accessed on January 19, 2013)
  30. 30.
    Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebric decision diagrams and their applications. Formal Methods in System Design 10(2-3), 171–206 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takahisa Toda
    • 1
  1. 1.ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Technology AgencyHokkaido UniversitySapporoJapan

Personalised recommendations