Definability of Accelerated Relations in a Theory of Arrays and Its Applications

  • Francesco Alberti
  • Silvio Ghilardi
  • Natasha Sharygina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)

Abstract

For some classes of guarded ground assignments for arrays, we show that accelerations (i.e. transitive closures) are definable in the theory of arrays via ∃ * ∀ *-first order formulae. We apply this result to model checking of unbounded array programs, where the computation of such accelerations can be used to prevent divergence of reachability analysis. To cope with nested quantifiers introduced by acceleration preprocessing, we use simple instantiation and refinement strategies during backward search analysis. Our new acceleration technique and abstraction/refinement loops are mutually beneficial: experiments conducted with the SMT-based model checker mcmt attest the effectiveness of our approach where acceleration and abstraction/refinement technologies fail if applied alone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking without transducers (On efficient verification of parameterized systems). In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy Abstraction with Interpolants for Arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI: SMT-Based Abstraction for Arrays with Interpolants. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 679–685. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal Guards, Relativization of Quantifiers, and Failure Models in Model Checking Modulo Theories. JSAT, 29–61 (2012)Google Scholar
  6. 6.
    Alberti, F., Ghilardi, S., Sharygina, N.: Tackling divergence: abstraction and acceleration in array programs. Technical Report 2012/01, University of Lugano (October 2012)Google Scholar
  7. 7.
    Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0 (2010), http://www.smt-lib.org
  9. 9.
    Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI, pp. 300–309 (2007)Google Scholar
  11. 11.
    Borralleras, C., Lucas, S., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reasoning 48(1), 107–131 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Bozga, M., Gîrlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verification of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam. Inform. 91(2), 275–303 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 428–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo theories. ACM Trans. Comput. Log. 12(1), 7 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, pp. 191–202 (2002)Google Scholar
  23. 23.
    Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in Satisfiabiliby Modulo Theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  26. 26.
    Hendriks, M., Larsen, K.G.: Exact acceleration of real-time model checking. Electr. Notes Theor. Comput. Sci. 65(6), 120–139 (2002)CrossRefGoogle Scholar
  27. 27.
    Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 187–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Larraz, D., Rodríguez-Carbonell, E., Rubio, A.: SMT-based array invariant generation. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 169–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transaction on Programming Languages and Systems 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  34. 34.
    Seghir, M.N., Podelski, A., Wies, T.: Abstraction Refinement for Quantified Array Assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction. In: PLDI (2009)Google Scholar
  36. 36.
    Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combination procedure. In: Proc. of FroCoS 1996, pp. 103–119. Kluwer (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francesco Alberti
    • 1
  • Silvio Ghilardi
    • 2
  • Natasha Sharygina
    • 1
  1. 1.Formal Verification LabUniversity of LuganoLuganoSwitzerland
  2. 2.Università degli Studi di MilanoMilanItaly

Personalised recommendations