Advertisement

Term Rewriting with Logical Constraints

  • Cynthia Kop
  • Naoki Nishida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)

Abstract

In recent works on program analysis, transformations of various programming languages to term rewriting are used. In this setting, constraints appear naturally. Several definitions which combine rewriting with logical constraints, or with separate rules for integer functions, have been proposed. This paper seeks to unify and generalise these proposals.

Keywords

Term rewriting Constraints Integer rewriting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Community. SMT-LIB, http://www.smtlib.org/
  2. 2.
    Dershowitz, N.: Orderings for term rewriting systems. Theor. Comput. Sci. 17(3), 279–301 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Falke, S., Kapur, D.: A term rewriting approach to the automated termination analysis of imperative programs. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 277–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 241–255. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler intermediate languages. In: Schmidt-Schauß, M. (ed.) Proc. RTA 2011. LIPIcs, vol. 10, pp. 41–50. Dagstuhl (2011)Google Scholar
  6. 6.
    Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving Termination by Dependency Pairs and Inductive Theorem Proving. Journal of Automated Reasoning 47(2), 133–160 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 32–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to procedural-program verification based on implicit induction of constrained term rewriting systems. IPSJ Trans. Program. 1(2), 100–121 (2008)Google Scholar
  10. 10.
    Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated termination proofs for Haskell by term rewriting. ACM Transactions on Programming Languages and Systems 33(2), 7:1–7:39 (2011)Google Scholar
  11. 11.
    Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)Google Scholar
  12. 12.
    Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma generation method in rewriting induction for constrained term rewriting systems. Computer Software 28(1), 173–189 (2010) (in Japanese)Google Scholar
  13. 13.
    Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of java bytecode by term rewriting. In: Lynch, C. (ed.) Proc. RTA 2010. LIPIcs, vol. 6, pp. 259–276. Dagstuhl (2010)Google Scholar
  14. 14.
    Sakata, T., Nishida, N., Sakabe, T.: On proving termination of constrained term rewrite systems by eliminating edges from dependency graphs. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 138–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., Thiemann, R.: Automated termination analysis for logic programs with cut. Theory and Practice of Logic Programming 10(4-6), 365–381 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cynthia Kop
    • 1
  • Naoki Nishida
    • 2
  1. 1.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Graduate School of Information ScienceNagoya UniversityJapan

Personalised recommendations