Computing Minimal Models Modulo Subset-Simulation for Modal Logics

  • Fabio Papacchini
  • Renate A. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)


In this paper we propose a novel minimality criterion for models of modal logics based on a variation of the notion of simulation, called subset-simulation. We present a minimal model sound and complete tableau calculus for the generation of this new kind of minimal models for the multi-modal logic K (m), and we discuss extensions to cover more expressive logics. The generation of minimal models is performed incrementally by using a minimality test to close branches representing non-minimal models, or to update the set of minimal models. Subset-simulation minimal models have the advantage that they are semantically more natural than models obtained by using syntactic minimality criteria.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: IJCAI 2003, pp. 319–324. Morgan Kaufmann (2003)Google Scholar
  2. 2.
    Baumgartner, P., Fürbach, U., Niemelä, I.: Hyper tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfiability. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 122–138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to minimal model generation. J. Automated Reasoning 25(1), 35–82 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, E.M., Schlingloff, B.: Model checking. In: Handbook of Automated Reasoning, pp. 1635–1790. Elsevier (2001)Google Scholar
  6. 6.
    Divroodi, A.R., Nguyen, L.A.: On bisimulations for description logics. CoRR abs/1104.1964 (2011)Google Scholar
  7. 7.
    Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation - coarsest partition problems. J. Automated Reasoning 31, 73–103 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proc. FCS-36, pp. 453–462. IEEE Computer Society (1995)Google Scholar
  9. 9.
    Hintikka, J.: Model minimization - an alternative to circumscription. J. Automated Reasoning 4(1), 1–13 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lorenz, S.: A tableaux prover for domain minimization. J. Automated Reasoning 13(3), 375–390 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\mathcal{EL}\). J. Symbolic Computation 45(2), 194–228 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Niemelä, I.: Implementing circumscription using a tableau method. In: Proc. ECAI 1996, pp. 80–84. Wiley (1996)Google Scholar
  13. 13.
    Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model generation. ENTCS 278(3), 159–172 (2011)MathSciNetGoogle Scholar
  14. 14.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabio Papacchini
    • 1
  • Renate A. Schmidt
    • 1
  1. 1.The University of ManchesterUK

Personalised recommendations