MetiTarski’s Menagerie of Cooperating Systems

  • Lawrence C. Paulson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)

Abstract

MetiTarski, an automatic theorem prover for real-valued special functions, is briefly introduced. Its architecture is sketched, with a focus on the arithmetic reasoning systems that it invokes. Finally, the paper describes some applications where MetiTarski is itself invoked by other tools.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic prover for the elementary functions. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 217–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beeson, M.: Automatic generation of a proof of the irrationality of e. Journal of Symbolic Computation 32(4), 333–349 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bridge, J., Paulson, L.: Case splitting in an automatic theorem prover for real-valued special functions. Journal of Automated Reasoning (2012) (in press), http://dx.doi.org/10.1007/s10817-012-9245-6
  5. 5.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica Journal 3(1), 56–71 (1993)Google Scholar
  8. 8.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbolic Comp. 5, 29–35 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Heinrich Matzat, B., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer (1999)Google Scholar
  11. 11.
    van den Dries, L.: Alfred Tarski’s elimination theory for real closed fields. Journal of Symbolic Logic 53(1), 7–19 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gray, M.A.: Sage: A new mathematics software system. Computing in Science Engineering 10(6), 72–75 (2008)CrossRefGoogle Scholar
  13. 13.
    Hong, H.: QEPCAD — quantifier elimination by partial cylindrical algebraic decomposition, Sources and documentation are on the Internet at http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
  14. 14.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds) Design and Application of Strategies/Tactics in Higher Order Logics, NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (September 2003)Google Scholar
  15. 15.
    Hurd, J.: Metis first order prover (2007), Website at http://gilith.com/software/metis/
  16. 16.
    Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 169–184. MIT Press (1999)Google Scholar
  17. 17.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Passmore, G.O., Paulson, L.C., de Moura, L.: Real algebraic strategies for MetiTarski proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 358–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Paulson, L.C.: MetiTarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lawrence C. Paulson
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeEngland

Personalised recommendations