1-Resiliency of Bipermutive Cellular Automata Rules

  • Alberto Leporati
  • Luca Mariot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8155)


It is known that CA rules which are both leftmost and rightmost permutive (bipermutive rules) are expansively and mixing chaotic. In this paper, we prove that bipermutive rules also satisfy the condition of 1-resiliency (that is, balancedness and first order correlation-immunity), which is an important property used in the design of pseudorandom number generators for cryptographic purposes. We thus derive an enumerative encoding for bipermutive rules based on a graph representation, and we use it to generate all the 256 bipermutive rules of radius 2. Among these rules we select the ones which satisfy additional cryptographic properties: high nonlinearity and 2-resiliency. Finally, we assess the quality of the pseudorandom sequences generated by these remaining rules with the ENT and NIST statistical test suites, taking the elementary rule 30 as a benchmark.


Cellular automata boolean functions pseudorandom number generators stream ciphers deterministic chaos permutivity resiliency nonlinearity Walsh transform ENT test suite NIST test suite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlet, C.: Boolean Functions for Cryptography and Error-Correcting Codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press, New York (2010)Google Scholar
  2. 2.
    Cattaneo, G., Finelli, M., Margara, L.: Investigating Topological Chaos by Elementary Cellular Automata Dynamics. Theor. Comput. Sci. 244(1-2), 219–244 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cattaneo, G., Dennunzio, A., Margara, L.: Chaotic Subshifts and Related Languages Applications to One-Dimensional Cellular Automata. Fundam. Inform. 52(1-3), 39–80 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  5. 5.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  6. 6.
    Martin, B.: A Walsh Exploration of Elementary CA Rules. J. Cell. Aut. 3(2), 145–156 (2008)zbMATHGoogle Scholar
  7. 7.
    National Institute of Standards and Technology: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication 800-22, Revision 1a (2010)Google Scholar
  8. 8.
    Siegenthaler, T.: Correlation-Immunity of Nonlinear Combining Functions for Cryptographic Applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Trans. Comput. C-34(1), 81–85 (1985)CrossRefGoogle Scholar
  10. 10.
    Tarannikov, Y.V.: On Resilient Boolean Functions with Maximal Possible Nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Walker, J.: ENT Randomness Test Suite,
  12. 12.
    Wolfram, S.: Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55(3), 601–644 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wolfram, S.: Random Sequence Generation by Cellular Automata. Adv. Appl. Math. 7(2), 123–169 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xiao, G.-Z., Massey, J.L.: A Spectral Characterization of Correlation-Immune Combining Functions. IEEE Trans. Inf. Theory 34(3), 569–571 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Mariot
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi Milano - BicoccaMilanoItaly

Personalised recommendations