A Survey on m-Asynchronous Cellular Automata

  • Enrico Formenti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8155)

Abstract

The paper after briefly surveying main asynchronous models in cellular automata will report recent developments in the study of m-ACA, a new general framework for studying asynchrony in cellular spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acerbi, L., Dennunzio, A., Formenti, E.: Conservation of some dynamical properties for operations on cellular automata. Theoretical Computer Science 410(38-40), 3685–3693 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Acerbi, L., Dennunzio, A., Formenti, E.: Surjective multidimensional cellular automata are non-wandering: A combinatorial proof. Information Processing Letters 113(5-6), 156–159 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alarcon, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. Journal of Theoretical Biology 225, 257–274 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. Journal of Computer and System Sciences 6, 448–464 (1972)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Blanchard, F., Cervelle, J., Formenti, E.: Some results about the chaotic behavior of cellular automata. Theor. Comput. Sci. 349(3), 318–336 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cattaneo, G., Dennunzio, A., Farina, F.: A full cellular automaton to simulate predator-prey systems. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 446–451. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cattaneo, G., Dennunzio, A., Margara, L.: Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundamenta Informaticae 52, 39–80 (2002)MathSciNetMATHGoogle Scholar
  8. 8.
    Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: On the dynamical behavior of chaotic cellular automata. Theoretical Computer Science 217(1), 31–51 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cattaneo, G., Dennunzio, A., Margara, L.: Solution of some conjectures about topological properties of linear cellular automata. Theoretical Computer Science 325, 249–271 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata Theory and Applications, vol. 1. IEEE Press, New York (1997)MATHGoogle Scholar
  11. 11.
    Chopard, B.: Cellular automata and lattice boltzmann modeling of physical systems. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing, pp. 287–331. Springer (2012)Google Scholar
  12. 12.
    Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: On the directional dynamics of additive cellular automata. Theoretical Computer Science 410, 4823–4833 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: Periodic orbits and dynamical complexity in cellular automata. Fundamenta Informaticae 126, 183–199 (2013)Google Scholar
  14. 14.
    Dennunzio, A., Formenti, E., Manzoni, L.: Computing issues of asynchronous CA. Fundamenta Informaticae 120(2), 165–180 (2012)MathSciNetMATHGoogle Scholar
  15. 15.
    Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-asynchronous cellular automata: from fairness to quasi-fairness. Natural Computing (in press, 2013)Google Scholar
  16. 16.
    Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: Classes, dynamics, and decidability. Information and Computation 215, 32–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dennunzio, A., Formenti, E., Weiss, M.: Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theoretical Computer Science (to appear, 2013)Google Scholar
  18. 18.
    Dennunzio, A., Guillon, P., Masson, B.: Sand automata as cellular automata. Theoretical Computer Science 410, 3962–3974 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Farina, F., Dennunzio, A.: A predator-prey cellular automaton with parasitic interactions and environmental effects. Fundamenta Informaticae 83(4), 337–353 (2008)MathSciNetMATHGoogle Scholar
  20. 20.
    Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behaviour of double-quiescent elementary cellular automata. Theoretical Computer Science 362, 1–16 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Halmos, P.R.: Measure theory. Graduate texts in Mathematics, vol. 38. Springer (1974)Google Scholar
  23. 23.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Mathematical Systems Theory 3, 320–375 (1969)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48(1), 149–182 (1994)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kier, L.B., Seybold, P.G., Cheng, C.-K.: Modeling Chemical Systems using Cellular Automata. Springer (2005)Google Scholar
  27. 27.
    Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. J. Comput. Syst. Sci. 70, 201–220 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Manzoni, L.: Asynchronous cellular automata and dynamical properties. Natural Computing 11(2), 269–276 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nakamura, K.: Asynchronous cellular automata and their computational ability. Systems, Computers, Control 5, 58–66 (1974)Google Scholar
  30. 30.
    Regnault, D.: Proof of a phase transition in probabilistic cellular automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 433–444. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar
  32. 32.
    Wolfram, S.: A new kind of science. Wolfram-Media (2002)Google Scholar
  33. 33.
    Worsch, T.: Towards intrinsically universal asynchronous ca. Natural Computing (in press, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enrico Formenti
    • 1
  1. 1.CNRS, I3S, UMR 7271Nice Sophia Antipolis UniversitySophia AntipolisFrance

Personalised recommendations