Advertisement

The Integration of Web-Based Information and the Structured Data in Data Warehousing

  • Jacek Maślankowski
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 161)

Abstract

The article presents the concept of the solution for feeding the data warehouse from website forums including opinions about selected products. The key of the solution is to add a new data warehouse dimension called Variable that allows identifying both structured and unstructured data. In suggested solution the results of websites analysis will be stored in the same repository as the data from traditional corporate systems, such as CRM or ERP. The concept was presented regarding Internet shops that offered a selected kind of products.

Keywords

data warehouse big data unstructured data data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowicz, W., Kalczyński, P., Węcel, K.: Filtering the Web to Feed Data Warehouses, pp. 5, 105, 121–122. Springer (2002)Google Scholar
  2. 2.
    Bartram, P.: The value of data. In: Financial Management, p. 28 (March 2013)Google Scholar
  3. 3.
    Bughin, J., Livingston, J., Marwaha, S.: Seizing the potential of ‘big data’. McKinsey Quarterly (4), 104–105 (2011)Google Scholar
  4. 4.
    Chau, M., Xu, J.: Business Intelligence in Blogs: Understanding Consumer Interactions and Communities. MIS Quarterly 36(4), 1190 (2012)Google Scholar
  5. 5.
    Chen, H., Chaing, R.H.L., Storey, V.C.: Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly 36(4), 1182 (2012)Google Scholar
  6. 6.
    Das, T., Kumar, P.M.: BIG Data Analytics: A Framework for Unstructured Data Analysis. International Journal of Engineering Science & Technology 5(1), 153 (2013)Google Scholar
  7. 7.
  8. 8.
    Gobble, M.M.: Big Data: The Next Big Thing in Innovation. Research Technology Management 56(1), 64 (2013)CrossRefGoogle Scholar
  9. 9.
    Guo, L.: The Application of Social Network Analysis in Agenda Setting Research: A Methodological Exploration. Journal of Broadcasting & Electronic Media 56(4), 617 (2012)CrossRefGoogle Scholar
  10. 10.
    Harris, C.: Dividing into Big Data. Canadian Underwriter 80(2), 29 (2013)Google Scholar
  11. 11.
    Hackathorn, R.: Farming the Web. Byte.com 22(10), 43 (1997)Google Scholar
  12. 12.
    Hu, J., Zhong, N.: Web farming with clickstream. International Journal of Information Technology & Decision Making 7(2), 296–297 (2008)CrossRefGoogle Scholar
  13. 13.
    Inmon, W.H., Strauss, D., Neushloss, G.: DW 2.0. The Architecture for the Next Generation of Data Warehousing, pp. 28, 34–35. Elsevier Inc. (2008)Google Scholar
  14. 14.
    Inmon, W.H.: Building the Data Warehouse, 4th edn., pp. 290–291, 305, 311–313, 320. Wiley Publishing, Inc. (2005)Google Scholar
  15. 15.
    Khansa, L., Zobel, C., Goicochea, G.: Creating a Taxonomy for Mobile Commerce Innovations Using Social Network and Cluster Analyses. International Journal of Electronic Commerce 16(4), 20 (Summer 2012)Google Scholar
  16. 16.
    McKenna, B.: King.com gaming site unlocks big data to switch to Hadoop database. Computer Weekly, 9–10 (May 3, 2013)Google Scholar
  17. 17.
    Maślankowski, J.: Integration of Text- and Data-Mining Technologies for Use in Banking Applications. In: Nillson, et al. (eds.) Advances in Information Systems Development, p. 973. Springer Science, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Moya, L.G., Kudama, S., Aramburu Cabo, M.J., Berlanga Llavori, R.: Integrating web feed opinions into a corporate data warehouse. In: Proceedings of the 2nd International Workshop on Business Intelligence and the WEB. ACM, New York (2011)Google Scholar
  19. 19.
    Lujan-Mora, S., Trujillo, J.: Physical Modeling of Data Warehouses using UML. In: Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, pp. 51–53 (2004)Google Scholar
  20. 20.
    Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data Mapping Diagrams for Data Warehouse Design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 191–204. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Picciano, A.G.: The Evolution of Big Data and Learning Analytics in American Higher Education. Journal of Asynchronous Learning Networks 16(3), 12 (2012)Google Scholar
  22. 22.
    Reddy, G., Srinivasu, R., Rao, M., Rikkula, S.: Data Warehousing, Data Mining, OLAP and OLTP Technologies are Essential Elements to Support Decision-Making Process in Industries. International Journal on Computer Science & Engineering 2(9), 2866 (2010)Google Scholar
  23. 23.
    Teplow, D.: The emperor has no clothes. Business Intelligence Journal 18(1), 38 (2013)Google Scholar
  24. 24.
    Thomas, H., Datta, A.: A Conceptual Model and Algebra for On-Line Analytical Processing in Decision Support Databases. Information Systems Research 12(1), 83 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jacek Maślankowski
    • 1
  1. 1.Department of Business InformaticsUniversity of GdańskPoland

Personalised recommendations