Vibration Pattern for the Implementation of Haptic Joystick

  • Kyung-Wook Noh
  • Sun-Kyun Kang
  • Dong-Hyuk Lee
  • Jangmyung Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8102)


In this paper, the obstacle recognition research is conducted by using vibration pattern. Remotely, the user can perceive the surroundings sensed by the obstacle recognition unit. The vibration motor was installed at the bottom of the joystick in order to let the user perceive the distance value of the obstacle which can be recognized by ultrasonic sensors. And in the various situations, the operation can be precisely implemented by using the Fuzzy controller.


Haptic joystick Ultrasonic sensor Vibration pattern Fuzzy controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, H.-S., Kang, H.-J.: Design of Remote Manipulator Control System using PHANToM Device. In: Power Electronics Conference 2005, pp. 595–597 (July 2005)Google Scholar
  2. 2.
    Kyung, K.U., Park, J.S.: The State of the Art and R&D Perceptives on Haptics. Electronics and Telecommunications Trends 21(5), 93–108 (2006)Google Scholar
  3. 3.
    Kim, H., Kyung, K.-U., Park, J., Han, D.: The state-of-the-art on Haptic Interface. Journal of Information Technology 8(1), 7–15 (2010)Google Scholar
  4. 4.
    Ryu, J., Kim, J., Seo, C., Lim, Y.-A., Kim, J.-P.: A Survey of Haptic Control Technology. Journal of the Korean Society of Mechanical Engineers A 33(4), 283–295 (2009)CrossRefGoogle Scholar
  5. 5.
    Kim, M.C.: The present and the future of haptic interfaces. Weekly Technology Trends 1204, 28–364 (2005)Google Scholar
  6. 6.
    Rhiu, I., Jin, B., Lee, J., Park, N.-H., Gohng, J., Yun, M.H.: Effect of Haptic Feedback Type on Control Feel of a Thumbwheel Device. In: HCI 2011, pp. 809–812 (January 2011)Google Scholar
  7. 7.
    Jung, H., Kim, D.H.: Control of a mobile Robot Based on a Tangible Interface using iPhone. Korean Institute of Intelligent Systems 21(3), 335–340 (2011)CrossRefGoogle Scholar
  8. 8.
    Hwang, Y.-S., Lee, J.-M.: Development of Haptic Glove for Remote Control. The Transactions of the Korean Institute of Electrical Engineers 60(5), 1030–1035 (2011)CrossRefGoogle Scholar
  9. 9.
    Kawasaki, H., Mouri, T., Ikenohata, S., Ohtsuka, Y., Endo, T.: Multi-Fingered Haptic Interface Robot Handling Plural Tool Devices. In: World Haptics 2007, pp. 397–402 (March 2007)Google Scholar
  10. 10.
    Lee, K., Lee, D.Y.: Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment. Journal of Institute of Control, Robotics and Systems 14(7), 663–671 (2008)CrossRefGoogle Scholar
  11. 11.
    Ko, A.-K., Choi, J.-Y., Kim, H.-C., Lee, J.-M.: A Haptic Interface Using a Force-Feedback Joystick. Journal of Institute of Control, Robotics and Systems 13(12), 1207–1212 (2007)Google Scholar
  12. 12.
    Han, S., Lee, J.: Tele-operation of a Mobile Robot Using a Force Reflection Joystick with a Single Hall Sensor. In: 16th IEEE International Conference on Robot & Human Interactive Communication, pp. 206–211 (August 2007)Google Scholar
  13. 13.
    Nohmi, M., Ando, A., Bock, T.: Contact Task by Space Teleoperation Using Force Reflection of Communication Time Delay. In: IEEE International Symposium on CIRA, pp. 193–198 (2005)Google Scholar
  14. 14.
    Choi, Y.-K., Choi, W.-S., Song, J.-B.: Object Avoidance of a Mobile Robot Using Low-Cost Ultrasonic Sensors with Wide Beam Angle. Institute of Control, Robotics and Systems 15(11), 1102–1107 (2009)CrossRefGoogle Scholar
  15. 15.
    Kim, H.-N., Kim, H.-J.: A study on the obstacle avoidance using ultrasonic sensors for a mobile robot. In: Proceedings of KIIS Spring Conference, vol. 20(1), pp. 373–375 (2010)Google Scholar
  16. 16.
    Jin, T.: Object avoidance of Mobile Robot with Virtual Impedance. In: Proceedings of KIIS Conference, vol. 19(4), pp. 451–456 (2009)Google Scholar
  17. 17.
    Kweon, Y.-T., Kim, M.-K., Kang, H.-J., Roh, Y.-S.: Remote Control of a Mobile Robot using Haptic Device. In: Korean Society of Precision Engineering Autumn Conference, pp. 120–124 (October 2004)Google Scholar
  18. 18.
    Huang, C.-H., Wang, W.-J., Fellow, Chiu, C.-H.: Design and Implementation of Fuzzy Control on a Two-Wheel Inverted Pendulum. IEEE Transactions on Industrial Electronics 58(7), 2988–3001 (2011)CrossRefGoogle Scholar
  19. 19.
    Lee, Y.-H., Jin, G.-G., Choi, H.-S., Park, H.-I., Jang, H.-L., So, M.-O.: Fuzzy Rule Based Trajectory Control of Mobile Robot. Journal of the Korean Society of Marine Engineering 34(1), 109–115 (2010)CrossRefGoogle Scholar
  20. 20.
    Lee, W.-H., Lee, H.-W., Kim, S.-H., Jung, J.-Y., Roh, T.-J.: Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy. Journal of Fuzzy Logic and Intelligent Systems 14(7), 907–913 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kyung-Wook Noh
    • 1
  • Sun-Kyun Kang
    • 2
  • Dong-Hyuk Lee
    • 2
  • Jangmyung Lee
    • 2
  1. 1.Department of Interdisciplinary Program in RoboticsPusan National UniversityKorea
  2. 2.Department of Electrical EngineeringPusan National UniversityKorea

Personalised recommendations