Advertisement

An Overview of Wearable Sensing and Wearable Feedback for Gait Retraining

  • Pete B. Shull
  • Wisit Jirattigalachote
  • Xiangyang Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8102)

Abstract

Wearable gait retraining could enable benefits from laboratory retraining systems to extend to a broad portion of the population, which doesn’t live near or have access to laboratory gait retraining testing facilities. While few portable gait retraining systems utilize both wearable sensing and wearable feedback, several systems employ critical components. The purpose of this paper is to provide a brief overview of various wearable sensing and wearable feedback components for gait retraining. We discuss wearable inertial sensors including accelerometers, gyroscopes, and magnetometers to estimate gait kinematics, wearable haptic feedback for retraining gait kinematics, wearable goniometers for measuring 2D and 3D ankle kinematics, and wearable measures of foot force and foot pressure. We conclude with a look at the future of wearable gait retraining systems and possible applications.

Keywords

Real-time training rehabilitation gait feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lieberman, J., Breazeal, C.: TIKL: Development of a Wearable Vibrotactile Feedback Suit for Improved Human Motor Learning. IEEE Trans. on Robotics 23, 919–926 (2007)CrossRefGoogle Scholar
  2. 2.
    Bloomfield, A., Badler, N.I.: Virtual Training via Vibrotactile Arrays. Presence: Teleoperators & Virtual Environments 17, 103–120 (2008)CrossRefGoogle Scholar
  3. 3.
    Kapur, P., Premakumar, S., Jax, S.A., Buxbaum, L.J., Dawson, A.M., Kuchenbecker., K.J.: Vibrotactile Feedback System for Intuitive Upper-limb Rehabilitation. IEEE World Haptics, 621–622 (2009)Google Scholar
  4. 4.
    Shull, P.B., Lurie, K., Cutkosky, M., Besier, T.: Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J. Biomech. 44, 1605–1609 (2011)CrossRefGoogle Scholar
  5. 5.
    Barrios, J.A., Crossley, K.M., Davis, I.S.: Gait Retraining to Reduce the Knee Adduction Moment through Real-time Visual Feedback of Dynamic Knee Alignment. J. Biomech. 43, 2208–2213 (2010)CrossRefGoogle Scholar
  6. 6.
    Hunt, M.A., Simic, M., Hinman, R.S., Bennell, K.L., Wrigley, T.V.: Feasibility of a Gait Retraining Strategy for Reducing Knee Joint Loading: Increased Trunk Lean Guided by Real-time Biofeedback. J. Biomech. 44, 943–947 (2011)CrossRefGoogle Scholar
  7. 7.
    Tate, J.J., Milner, C.E.: Real-time Kinematic, Temporospatial, and Kinetic Biofeedback During Gait Retraining in Patients: A Systematic Review. Phys. Ther. 90, 1123–1134 (2010)CrossRefGoogle Scholar
  8. 8.
    Shull, P.B., Silder, A., Shultz, R., Dragoo, J.L., Besier, T.F., Delp, S.L., Cutkosky, M.R.: Six-Week Gait Retraining Program Reduces Knee Adduction Moment, Reduces Pain, and Improves Function for Individuals with Medial Compartment Knee Osteoarthritis. J. Ortho. Res. 31(7), 1020–1025 (2013)CrossRefGoogle Scholar
  9. 9.
    Shull, P.B., Lurie, K., Shin, M., Besier, T., Cutkosky, M.: Haptic Gait Retraining for Knee Osteoarthritis Treatment. In: IEEE Haptics Symposium, pp. 409–416. IEEE Press, New York (2010)CrossRefGoogle Scholar
  10. 10.
    Mayagoitia, R.E., Nene, A.V., Veltink, P.H.: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics 35(4), 537–542 (2002)CrossRefGoogle Scholar
  11. 11.
    Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 295–302 (2004)CrossRefGoogle Scholar
  12. 12.
    Goulermas, J.Y., Howard, D., Nester, C.J., Jones, R.K., Ren, L.: Regression techniques for the prediction of lower limb kinematics. Journal of Biomechanical Engineering 127(6), 1020 (2005)CrossRefGoogle Scholar
  13. 13.
    Simcox, S., Parker, S., Davis, G.M., Smith, R.W., Middleton, J.W.: Performance of orientation sensors for use with a functional electrical stimulation mobility system. Journal of Biomechanics 38(5), 1185–1190 (2005)CrossRefGoogle Scholar
  14. 14.
    Favre, J., Luthi, F., Jolles, B.M., Siegrist, O., Najafi, B., Aminian, K.: A new ambulatory system for comparative evaluation of the three-dimensional knee kinematics, applied to anterior cruciate ligament injuries. Knee Surgery, Sports Traumatology, Arthroscopy 14(7), 592–604 (2006)CrossRefGoogle Scholar
  15. 15.
    Yun, X., Bachmann, E.R.: Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Transactions on Robotics 22(6), 1216–1227 (2006)CrossRefGoogle Scholar
  16. 16.
    Roetenberg, D., Slycke, P.J., Veltink, P.H.: Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Transactions on Biomedical Engineering 54(5), 883–890 (2007)CrossRefGoogle Scholar
  17. 17.
    Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11(2), 1489–1525 (2011)CrossRefGoogle Scholar
  18. 18.
    Watanabe, T., Saito, H., Koike, E., Nitta, K.: A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system. Computational Intelligence and Neuroscience 2011, 6 (2011)CrossRefGoogle Scholar
  19. 19.
    Basaglia, N., Mazzini, N., Boldrini, P., Bacciglieri, P., Contenti, E., Ferraresi, G.: Biofeedback Treatment of Genu-Recurvatum Using an Electrogoniometric Device with an Acoustic Signal. Scand. J. Rehab. Med. 21, 125–130 (1989)Google Scholar
  20. 20.
    Riskowski, J.L., Mikesky, A.E., Bahamonde, R.E., Burr, D.B.: Design and Validation of a Knee Brace with Feedback to Reduce the rate of Loading. J. Biomech. Engr. 131, 84503–84506 (2009)CrossRefGoogle Scholar
  21. 21.
    Shull, P.B., Shultz, R., Silder, A., Dragoo, J.L., Besier, T.F., Cutkosky, M.R., Delp, S.L.: Toe-in Gait Reduces the First Peak Knee Adduction Moment in Patients with Medial Compartment Knee Osteoarthritis. J. Biomech. 46, 122–128 (2013)CrossRefGoogle Scholar
  22. 22.
    Bark, K., Wheeler, J., Shull, P.B., Savall, J., Cutkosky, M.R.: Rotational Skin Stretch Feedback: A Wearable Haptic Display for Motion. IEEE Trans. on Haptics 3, 166–176 (2010)CrossRefGoogle Scholar
  23. 23.
    Wheeler, J.W., Shull, P.B., Besier, T.: Real-time Knee Adduction Moment Feedback for Gait Retraining through Visual and Tactile Displays. J. Biomech. Engr. 133, 041007-5 (2011)Google Scholar
  24. 24.
    Dowling, A.V., Fisher, D.S., Andriacchi, T.P.: Gait Modification via Verbal Instruction and an Active Feedback System to Reduce Peak Knee Adduction Moment. J. Biomech. Engr. 132, 071007-5 (2010)Google Scholar
  25. 25.
    Carmines, D.V., Nunley, J.A., McElhaney, J.H.: Effects of Ankle Taping on the Motion and Loading Pattern of the Foot for Walking Subjects. J. Ortho. Res. 6, 223–229 (1988)CrossRefGoogle Scholar
  26. 26.
    Laughman, R.K., Carr, T.A., Chao, E.Y., Youdas, J.W., Sim, F.H.: Three-Dimensional Kinematics of the Taped Ankle Before and After Exercise. Amer. J. Sports Med. 8, 425–431 (1980)CrossRefGoogle Scholar
  27. 27.
    Pappas, I.P., Popovic, M.R., Keller, T., Dietz, V., Morari, M.: A reliable gait phase detection system. IEEE Transactions on Neural Systems and Rehabilitation Engineering 9(2), 113–125 (2001)CrossRefGoogle Scholar
  28. 28.
    Veltink, P.H., Liedtke, C., Droog, E., van der Kooij, H.: Ambulatory measurement of ground reaction forces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3), 423–427 (2005)CrossRefGoogle Scholar
  29. 29.
    Liedtke, C., Fokkenrood, S.A., Menger, J.T., van der Kooij, H., Veltink, P.H.: Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture 26(1), 39–47 (2007)CrossRefGoogle Scholar
  30. 30.
    Schepers, H.M., Koopman, H.F.J.M., Veltink, P.H.: Ambulatory assessment of ankle and foot dynamics. IEEE Transactions on Biomedical Engineering 54(5), 895–902 (2007)CrossRefGoogle Scholar
  31. 31.
    Bamberg, S., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine 12(4), 413–423 (2008)CrossRefGoogle Scholar
  32. 32.
    Redd, C.B., Bamberg, S.J.M.: A wireless sensory feedback device for real-time gait feedback and training. IEEE/ASME Transactions on Mechatronics 17(3), 425–433 (2012)CrossRefGoogle Scholar
  33. 33.
    De León Rodriguez, D., Allet, L., Golay, A., Philippe, J., Assal, J.P., Hauert, C.A., Pataky, Z.: Biofeedback can reduce foot pressure to a safe level and without causing new at-risk zones in patients with diabetes and peripheral neuropathy. Diabetes/Metabolism Research and Reviews 29(2), 139–144 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pete B. Shull
    • 1
  • Wisit Jirattigalachote
    • 2
  • Xiangyang Zhu
    • 1
  1. 1.State Key Laboratory of Mechanical System and Vibration, Institute of Robotics, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations