Speed Adaptation of a Small Size Treadmill Using Impedance Control Approach for Rehabilitation

  • Jungwon Yoon
  • Auralius Manurung
  • Irfan Hussain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8102)


Automatic speed adaptation in treadmill training plays an important role in gait rehabilitation. To implement automatic speed adaptation of a treadmill belt, we have developed a novel impedance control scheme that accommodates natural movements without mechanical attachments to the user, and can estimate user-treadmill interactive forces to directly detect user intention, while simultaneously maintaining the user’s position on the treadmill platform. The experimental results showed that our impedance control scheme can provide a non-intrusive, intuitive method for implementing user-selected speed on a small treadmill. The proposed technique is cost-effective, and could potentially be applied to any type of locomotion interface or gait rehabilitation system, without the use of expensive, sophisticated sensors or special treadmills.


Impedance control treadmill automatic speed adaptation gait rehabilitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hesse, S., Bertelt, C., Schaffrin, A., Mauritz, K.H.: Restoration of Gait in Non-ambulatory Hemiparetic Patients by Treadmill Training with Partial Body Weight Support. Arch. Phys. Med. Rehabil. 75(10), 87–1093 (1994)CrossRefGoogle Scholar
  2. 2.
    Wang, F., et al.: Body sway measurement for fall risk assessment using inexpensive webcams. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2010)Google Scholar
  3. 3.
    Christensen, R.R., Hollerbach, J.M., Xu, Y., Meek, S.G.: Inertial force feedback for the treadport locomotion interface. Presence: Teleoperators and Virtual Environments 9, 1–14 (2000)CrossRefGoogle Scholar
  4. 4.
    von Zitzewitz, J., Bernhardt, M., Riener, R.: A novel methods for automatic treadmill speed adaptation. IEEE Trans. Neural Syst. and Rehabil. Eng. 15(3), 401–409 (2007)CrossRefGoogle Scholar
  5. 5.
    Koenig, A., Binder, C., von Zitzewitz, J., Omlin, X., Bolliger, M., Riener, R.: Voluntary gait speed adaptation for robot-assisted treadmill training. In: IEEE 11th Int. Conf. on Rehabilitation Robotics, Kyoto, Japan (2009)Google Scholar
  6. 6.
    Checcacci, D., Hollerbach, J.M., Hayward, R., Bergamasco, M.: Design and analysis of a harness for torso force application in locomotion interfaces. In: IEEE EuroHaptics Conference, Los Alamitos, CA, pp. 53–67 (2003)Google Scholar
  7. 7.
    Feasel, J., Whitton, M.C., Kassler, L.P., Brooks Jr., F.P., Lewek, M.D.: The Integrated virtual environment rehabilitation treadmill system. IEEE Trans. Neural. Syst. Rehabil. Eng. 19(3), 290–297 (2011)Google Scholar
  8. 8.
    Minetti, A.E., Boldrini, L., Brusamolin, L., Zamparo, P., McKee, T.: A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans. J. Appl. Physiol. 95, 838–843 (2003)MATHGoogle Scholar
  9. 9.
    Lichtenstein, L., Barabas, J., Woods, R.L., Peli, E.: A feedback control instrument for treadmill locomotion in virtual environments. ACM Trans. Appl. Percept. 4(1) (January 2007)Google Scholar
  10. 10.
    Fung, J., Richards, C.L., Malouin, F., McFadyen, B.J., Lamontagne, A.: A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol. Behav. 9, 157–162 (2006)CrossRefGoogle Scholar
  11. 11.
    De Luca, A., Mattone, R., Giordano, P.R., Bulthoff, H.H.: Control Design of the 2D CyberWalk platform. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, MO (October 2009)Google Scholar
  12. 12.
    Souman, J.L., Giordano, P.R., Frissen, I., Luca, A.D., Ernst, M.O.: Making virtual reality real: perceptual evaluation of a new treadmill control algorithm. ACM Trans. Applied Perception 7(2) (2010)Google Scholar
  13. 13.
    Noma, H., Miyasato, T.: Design for locomotion interface in a large scale virtual environment ATLAS: ATR locomotion interface for active self motion. In: Proceedings of the IEEE 7th Annual Symposium on Haptic Interface for Virtual Environments and Teleoperated Systems, Los Alamitos CA, pp. 111–118 (1998)Google Scholar
  14. 14.
    Yoon, J., Park, H., Damiano, D.L.: A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. Journal of NeuroEngineering and Rehabilitation 9(62) (2012)Google Scholar
  15. 15.
    Hogan, N.: On the stability of manipulators performing contact tasks. IEEE J. Robotics and Automation 4, 677–686 (1988)CrossRefGoogle Scholar
  16. 16.
    Shi, K.L., Chan, T.F., Wong, Y.K., Ho, S.L.: Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans. Industrial Electronics 49(1) (February 2002)Google Scholar
  17. 17.
    Belanger, P.R.: Estimation of angular velocity and acceleration from shaft encoder measurement. In: IEEE Int. Conf. on Robotics and Automation, Nice, France (1992)Google Scholar
  18. 18.
    Drolet, L., Michaud, F., Cote, J.: Adaptable Sensor Fusion Using Multiple Kalman Filter. In: IEEE/RSJ Int. Conf. on Intelligent Robot and System, Takamatsu, Japan (2000)Google Scholar
  19. 19.
    Busawon, K.K., Kabore, P.: On the Design of Integral and Proportional Integral Observers. In: Proc. of American Control Conf., Chicago, USA (2000)Google Scholar
  20. 20.
    Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Annual Reviews in Control 31, 179–188 (2007)CrossRefGoogle Scholar
  21. 21.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, New York (1990)Google Scholar
  22. 22.
    Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Petit, F., Wimbock, T., Wolf, S., Hirzinger, G.: Soft Robotics: From Torque Feedback Controlled Lightweight Robots to Intrinsically Compliant Systems. In: Int. Conf. on Control, Automation and Systems, Korea (2010)Google Scholar
  23. 23.
    Colgate, J.E., Grafing, P.E., Stanley, M.C., Schenkel, G.: Implementation of Stiff Virtual Walls in Force-Reflecting Interfaces. In: Virtual Reality Annu. Int. Symposium (September 1993)Google Scholar
  24. 24.
    Wimboeck, T., Ott, C., Hirzinger, G.: Passivity-based Object Level Impedance Control for Multifingered Hand. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China (2006)Google Scholar
  25. 25.
    Niemeyer, G., Slotine, J.-J.E.: Stable Adaptive Teleoperation. IEEE Journal of Oceanic Engineering 16(1), 152–162 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jungwon Yoon
    • 1
  • Auralius Manurung
    • 1
  • Irfan Hussain
    • 1
  1. 1.Robot and Intelligent Systems Lab, School of Mechanical Engineering and ReCAPTGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations