Multi-agent Reactive Planning for Solving Plan Failures

  • César Guzmán-Alvarez
  • Pablo Castejon
  • Eva Onaindia
  • Jeremy Frank
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


In this paper we present a multi-agent reactive planning mechanism for recovering from plan failures with the help of multiple agents. Our contribution is twofold: a proposal of a dynamic execution architecture embedded into a more general multi-agent planning framework, and a mechanism based on state-transition systems that allows execution agents to reactively and cooperatively attend a plan failure during execution. Specifically, we propose a flexible dynamic execution architecture that allows agents to find solutions for a successful plan execution during a plan failure.


reactive planner multi-agent planner coordination execution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Hsu, J.J., Jonsson, A., Kanefsky, B., Morris, P., Rajan, K., Yglesias, J., Chafin, B., Dias, W., Maldague, P.: MAPGEN: Mixed-initiative planning and scheduling for the Mars Exploration Rover mission. IEEE Intelligent Systems 19(1), 8–12 (2004)CrossRefGoogle Scholar
  2. 2.
    Aschwanden, P., Baskaran, V., Bernardini, S., Fry, C., Moreno, M., Muscettola, N., Plaunt, C., Rijsman, D., Tompkins, P.: Model-unified planning and execution for distributed autonomous system control. In: Workshop on Spacecraft Autonomy: Using AI to Expand Human Space Exploration. AAAI Press (2006)Google Scholar
  3. 3.
    Browning, B., Bruce, J., Bowling, M., Veloso, M.: Stp: Skills, tactics and plays for multi-robot control in adversarial environments. IEEE Journal of Control and Systems Engineering 219, 33–52 (2005)Google Scholar
  4. 4.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  5. 5.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Planning Application from a Timeline Representation Framework. In: Proceedings of the 21st Innovative Applications of Artificial Intelligence Conference, IAAI 2009, Pasadena, CA, USA (2009)Google Scholar
  6. 6.
    Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model checking and heuristic search. Artif. Intell. 159(1-2), 127–206 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Firby, R.J.: Task networks for controlling continuous processes. In: Artificial Intelligence Planning Systems: Proceedings of the First International Conference, pp. 49–54. Morgan Kaufmann Pub. (1994)Google Scholar
  8. 8.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of AAAI 1987 Sixth National Conference on Artificial Intelligence, Seattle, WA (USA), pp. 677–668 (July 1987)Google Scholar
  9. 9.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: Proceedings of the 2nd International Conference on AI Planning Systems (1994)Google Scholar
  10. 10.
    Guzman, C., Alcazar, V., Prior, D., Onaindia, E., Borrajo, D., Fernández-Olivares, J., Quintero, E.: Pelea: a domain-independent architecture for planning, execution and learning. In: Scheduling and Planning Applications woRKshop (SPARK) ICAPS 2012 (2012)Google Scholar
  11. 11.
    Sycara, K.P., Paolucci, M., Van Velsen, M., Giampapa, J.A.: The retsina mas infrastructure. Autonomous Agents and Multi-Agent Systems 7(1-2), 29–48 (2003)CrossRefGoogle Scholar
  12. 12.
    Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D., Podorozhny, R., Prasad, M.N., Raja, A., Vincent, R., Xuan, P., Zhang, X.Q.: Evolution of the gpgp/taems domain-independent coordination framework. Autonomous Agents and Multi-Agent Systems 9(1-2), 87–143 (2004)CrossRefGoogle Scholar
  13. 13.
    Sebastian Sardiña, L.P.: A bdi agent programming language with failure handling, declarative goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1), 18–70 (2011)CrossRefGoogle Scholar
  14. 14.
    Simmons, R.: Concurrent planning and execution for autonomous robots. In: IEEE International Conference on Robotics and Automation, pp. 46–50 (1992)Google Scholar
  15. 15.
    Such, J.M., Garcia-Fornes, A., Espinosa, A., Bellver, J.: Magentix2: a Privacy-enhancing Agent Platform. Engineering Applications of Artificial Intelligence (2012)Google Scholar
  16. 16.
    Wilkins, D.E., Myers, K.L.: A multiagent planning architecture (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • César Guzmán-Alvarez
    • 1
  • Pablo Castejon
    • 1
  • Eva Onaindia
    • 1
  • Jeremy Frank
    • 2
  1. 1.Universitat Politècnica de ValènciaValenciaSpain
  2. 2.NASA Ames Research CenterMoffet FieldUSA

Personalised recommendations