Advertisement

Construction of Sequential Classifier Based on Broken Stick Model

  • Robert Burduk
  • Pawel Trajdos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)

Abstract

This paper presents the problem of building the sequential model of the classification task. In our approach the structure of the model is built in the learning phase of classification. In this paper a split criterion based on the broken stick model is proposed. The broken stick distribution is created for each column of the confusion matrix. The split criterion is associated with the analysis of the received distributions. The obtained results were verified on ten data sets. Nine data sets come from UCI repository and one is a real-life data set.

Keywords

Broken stick distribution sequential classifier confusion matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolakowska, A., Malina, W.: Fisher Sequential Classifiers. IEEE Transaction on Systems, Man, and Cybernecics – Part B Cybernecics 35(5), 988–998 (2005)CrossRefGoogle Scholar
  2. 2.
    Mitchell, T.M.: Machine Learning. McGraw-Hill Comp., Inc., New York (1997)zbMATHGoogle Scholar
  3. 3.
    Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Syst. Appl. 34(1), 673–682 (2008)CrossRefGoogle Scholar
  4. 4.
    Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Systems, Man Cyber. 21(3), 660–674 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burduk, R.: Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis and Applications 13(1), 85–91 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cyganek, B.: Image Segmentation with a Hybrid Ensemble of One-Class Support Vector Machines. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 254–261. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Wozniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion (2013), doi: http://dx.doi.org/10.1016/j.inffus.2013.04.006
  8. 8.
    Kurzyński, M.: Decision Rules for a Hierarchical Classifier. Pat. Rec. Let. 1, 305–310 (1983)zbMATHCrossRefGoogle Scholar
  9. 9.
    Wozniak, M.: A hybrid decision tree training method using data streams. Knowledge and Information Systems 29(2), 335–347 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  11. 11.
    Rejer, I.: Genetic Algorithms in EEG Feature Selection for the Classification of Movements of the Left and Right Hand. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 579–589. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Penar, W., Woźniak, M.: Experiments on classifiers obtained via decision tree induction methods with different attribute acquisition cost limit. Advances in Soft Computing 45, 371–377 (2007)CrossRefGoogle Scholar
  13. 13.
    Quinlan, J.R.: Induction on Decision Tree. Machine Learning 1, 81–106 (1986)Google Scholar
  14. 14.
    Manwani, N., Sastry, P.S.: Geometric decision tree. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(1), 181–192 (2012)CrossRefGoogle Scholar
  15. 15.
    Quinlan, R.J.: C4.5: Programs for Machine Learning. Machine Learning 16(3), 235–240 (1993)Google Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons (2000)Google Scholar
  17. 17.
    Macarthur, R.: On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA 43, 293–295 (1957)CrossRefGoogle Scholar
  18. 18.
    King, C.E.: Relative Abundance of Species and MacArthur’s Model. Ecology 45(4), 716–727 (1964)CrossRefGoogle Scholar
  19. 19.
    De Vita, J.: Niche Separation and the Broken-Stick Model. The American Naturalist 114(2), 171–178 (1979)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Leonov, H., Mitchell, J.S., Arkin, I.T.: Monte Carlo Estimation of the Number of Possible Protein Folds: Effects of Sampling Bias and Folds Distributions. Proteins 51, 352–359 (2003)CrossRefGoogle Scholar
  21. 21.
    Yoshiaki, I., Sumie, U., Sumie, H.: The broken-stick model for amino acid composition in proteins. Journal of Molecular Evolution 16(1), 69–72 (1980)CrossRefGoogle Scholar
  22. 22.
    Frontier, S.: Etude de la decroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modele du baton brise. Biol. Ecol. 25, 67–75 (1976)CrossRefGoogle Scholar
  23. 23.
    Cangelosi, R., Goriely, A.: Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2(2) (2007)Google Scholar
  24. 24.
    Kurzyński, M.: On the Multistage Bayes Classifier. Pattern Recognition 21, 355–365 (1988)zbMATHCrossRefGoogle Scholar
  25. 25.
    Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1993)Google Scholar
  26. 26.
    Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)Google Scholar
  27. 27.
    Burduk, R., Woźniak, M.: Different decision tree induction strategies for a medical decision problem. Central European Journal of Medicine 7(2), 183–193 (2012)CrossRefGoogle Scholar
  28. 28.
    Kurzyński, M.: Diagnosis of acute abdominal pain using three-stage classifier. Computers in Biology and Medicine 17(1), 19–27 (1987)CrossRefGoogle Scholar
  29. 29.
    Dunn, O.J.: Multiple Comparisons Among Means. Journal of the American Statistical Association 56, 52–64 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Derrac, J., Garciya, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18 (2011)CrossRefGoogle Scholar
  31. 31.
    Bobrowski, L., Topczewska, M.: Separable Linearization of Learning Sets by Ranked Layer of Radial Binary Classifiers. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 135–144. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Burduk
    • 1
  • Pawel Trajdos
    • 1
  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations