Advertisement

Estimation of a Multi-fascicle Model from Single B-Value Data with a Population-Informed Prior

  • Maxime Taquet
  • Benoît Scherrer
  • Nicolas Boumal
  • Benoît Macq
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

Diffusion tensor imaging cannot represent heterogeneous fascicle orientations in one voxel. Various models propose to overcome this limitation. Among them, multi-fascicle models are of great interest to characterize and compare white matter properties. However, existing methods fail to estimate their parameters from conventional diffusion sequences with the desired accuracy. In this paper, we provide a geometric explanation to this problem. We demonstrate that there is a manifold of indistinguishable multi-fascicle models for single-shell data, and that the manifolds for different b-values intersect tangentially at the true underlying model making the estimation very sensitive to noise. To regularize it, we propose to learn a prior over the model parameters from data acquired at several b-values in an external population of subjects. We show that this population-informed prior enables for the first time accurate estimation of multi-fascicle models from single-shell data as commonly acquired in clinical context. The approach is validated on synthetic and in vivo data of healthy subjects and patients with autism. We apply it in population studies of the white matter microstructure in autism spectrum disorder. This approach enables novel investigations from large existing DWI datasets in normal development and in disease.

Keywords

Diffusion Single-Shell Generative Models Estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pasternak, O., Shenton, M.E., Westin, C.-F.: Estimation of extracellular volume from regularized multi-shell diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 305–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Pasternak, O., Sochen, N., Gur, Y., Intrator, N., Assaf, Y.: Free water elimination and mapping from diffusion MRI. Magnet. Reson. Med. 62(3), 717–730 (2009)CrossRefGoogle Scholar
  3. 3.
    Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. PLoS one 7(11) e48232 (2012)Google Scholar
  4. 4.
    Schultz, T., Westin, C.-F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 674–681. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Schwartzman, A., Mascarenhas, W.F., Taylor, J.E.: Inference for eigenvalues and eigenvectors of gaussian symmetric matrices. Ann. Stat., 2886–2919 (2008)Google Scholar
  6. 6.
    Taquet, M., Scherrer, B., Benjamin, C., Prabhu, S., Macq, B., Warfield, S.: Interpolating multi-fiber models by gaussian mixture simplification. In: IEEE ISBI, pp. 928–931 (2012)Google Scholar
  7. 7.
    Taquet, M., Scherrer, B., Commowick, O., Peters, J., Sahin, M., Macq, B., Warfield, S.K.: Registration and analysis of white matter group differences with a multi-fiber model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 313–320. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maxime Taquet
    • 1
    • 2
  • Benoît Scherrer
    • 1
  • Nicolas Boumal
    • 2
  • Benoît Macq
    • 2
  • Simon K. Warfield
    • 1
  1. 1.Computational Radiology LaboratoryHarvard Medical SchoolBostonUSA
  2. 2.ICTEAM InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations