Advertisement

Evaluating Structural Connectomics in Relation to Different Q-space Sampling Techniques

  • Paulo Rodrigues
  • Alberto Prats-Galino
  • David Gallardo-Pujol
  • Pablo Villoslada
  • Carles Falcon
  • Vesna Prčkovska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

Keywords

Acquisition Scheme Superior Longitudinal Fasciculus High Angular Resolution Characteristic Path Length Connectivity Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hagmann, P.: From Diffusion MRI to Brain Connectomics. PhD thesis, EPFL (2005)Google Scholar
  2. 2.
    Sporns, O., Tononi, G., Kötter, R., Ko, R.: The human connectome: A structural description of the human brain. PLoS Computational Biology 1(4), e42 (2005)Google Scholar
  3. 3.
    Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62(3), 1732–1749 (2012)CrossRefGoogle Scholar
  4. 4.
    Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. MRM 36, 893–906 (1996)CrossRefGoogle Scholar
  5. 5.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N.G., Belliveau, J.W., Wedeen, V.J.: High Angular Resolution Diffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity. MRM 48(4), 577–582 (2002)CrossRefGoogle Scholar
  6. 6.
    Prčkovska, V., Roebroeck, A.F., Pullens, W.L.P.M., Vilanova, A., ter Haar Romeny, B.M.: Optimal Acquisition Schemes in High Angular Resolution Diffusion Weighted Imaging. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 9–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., Dai, G., Pandya, D.N., Hagmann, P., D’Arceuil, H., de Crespigny, A.J.: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4), 1267–1277 (2008)CrossRefGoogle Scholar
  8. 8.
    Telesford, Q.K., Morgan, A.R., Hayasaka, S., Simpson, S.L., Barret, W., Kraft, R.A., Mozolic, J.L., Laurienti, P.J.: Reproducibility of Graph Metrics in fMRI Networks. Frontiers in Neuroinformatics 4, 10 (2010)CrossRefGoogle Scholar
  9. 9.
    Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A., Cammoun, L., Gigandet, X., Meuli, R., Hagmann, P., Thiran, J.P.: The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PloS one 7(12), e48121 (2012)Google Scholar
  10. 10.
    Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J.: Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. In: Proceedings of the 15th ISMRM Conference, p. 3720 (2007)Google Scholar
  11. 11.
    Butts, C.T.: Social network analysis: A methodological introduction. Asian Journal of Social Psychology 11(1), 13–41 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhan, L., Leow, A., Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Harel, N., Toga, A., Thompson, P.: Differential information content in staggered multiple shell hardi measured by the tensor distribution function. I S Biomd. Imaging, 305–309 (March 30-April 2, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paulo Rodrigues
    • 1
    • 2
  • Alberto Prats-Galino
    • 3
  • David Gallardo-Pujol
    • 2
  • Pablo Villoslada
    • 4
  • Carles Falcon
    • 5
  • Vesna Prčkovska
    • 4
  1. 1.Mint Labs S.L.BarcelonaSpain
  2. 2.Dept. of Personality, Faculty of PsychologyUBBarcelonaSpain
  3. 3.LSNA, Facultat de MedicinaUBBarcelonaSpain
  4. 4.Center for Neuroimmunology, Department of NeurosciencesIDIBAPS, Hospital ClinicBarcelonaSpain
  5. 5.Medical Imaging PlatformIDIBAPSBarcelonaSpain

Personalised recommendations