Advertisement

Supervised Feature Learning for Curvilinear Structure Segmentation

  • Carlos Becker
  • Roberto Rigamonti
  • Vincent Lepetit
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

We present a novel, fully-discriminative method for curvilinear structure segmentation that simultaneously learns a classifier and the features it relies on. Our approach requires almost no parameter tuning and, in the case of 2D images, removes the requirement for hand-designed features, thus freeing the practitioner from the time-consuming tasks of parameter and feature selection. Our approach relies on the Gradient Boosting framework to learn discriminative convolutional filters in closed form at each stage, and can operate on raw image pixels as well as additional data sources, such as the output of other methods like the Optimally Oriented Flux. We will show that it outperforms state-of-the-art curvilinear segmentation methods on both 2D images and 3D image stacks.

Keywords

Regression Tree Convolutional Neural Network Weak Learner Deep Neural Network Deep Belief Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee, T., Kashyap, R., Chu, C.: Building Skeleton Models via 3D Medial Surface Axis Thinning Algorithms. Graphical Models and Image Processing (1994)Google Scholar
  2. 2.
    Vasilkoski, Z., Stepanyants, A.: Detection of the Optimal Neuron Traces in Confocal Microscopy Images. Journal of Neuroscience Methods 178(1) (2009)Google Scholar
  3. 3.
    Chothani, P., Mehta, V., Stepanyants, A.: Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics 9(2-3) (2011)Google Scholar
  4. 4.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Law, M.W.K., Chung, A.C.S.: Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8) (2004)Google Scholar
  7. 7.
    Meijering, E., Jacob, M., Sarria, J.C.F., Steiner, P., Hirling, H., Unser, M.: Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry Part A 58A(2) (April 2004)Google Scholar
  8. 8.
    Santamaría-Pang, A., Colbert, C.M., Saggau, P., Kakadiaris, I.A.: Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 486–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    González, G., Aguet, F., Fleuret, F., Unser, M., Fua, P.: Steerable features for statistical 3D dendrite detection. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 625–632. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Rigamonti, R., Lepetit, V.: Accurate and efficient linear structure segmentation by leveraging ad hoc features with learned filters. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 189–197. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: Introduction. In: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2009)Google Scholar
  12. 12.
    Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Sun, G.: A General Boosting Method and Its Application to Learning Ranking Functions for Web Search. In: NIPS (2007)Google Scholar
  13. 13.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to Document Recognition. PIEEE (1998)Google Scholar
  14. 14.
    Hinton, G.: Learning to Represent Visual Input. Philosophical Transactions of the Royal Society (2010)Google Scholar
  15. 15.
    Cireşan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. In: NIPS (2012)Google Scholar
  16. 16.
    Caruana, R., Niculescu-Mizil, A.: An Empirical Comparison of Supervised Learning Algorithms. In: ICML (2006)Google Scholar
  17. 17.
    Becker, C.J., Rigamonti, R., Lepetit, V., Fua, P.: KernelBoost: Supervised Learning of Image Features For Classification. Technical report (2013)Google Scholar
  18. 18.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge Based Vessel Segmentation in Color Images of the Retina. TMI (2004)Google Scholar
  19. 19.
    Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning Separable Filters. In: CVPR (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos Becker
    • 1
  • Roberto Rigamonti
    • 1
  • Vincent Lepetit
    • 1
  • Pascal Fua
    • 1
  1. 1.CVLabÉcole Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations