Segmentation of Cells with Partial Occlusion and Part Configuration Constraint Using Evolutionary Computation

  • Masoud S. Nosrati
  • Ghassan Hamarneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

We propose a method for targeted segmentation that identifies and delineates only those spatially-recurring objects that conform to specific geometrical, topological and appearance priors. By adopting a “tribes”-based, global genetic algorithm, we show how we incorporate such priors into a faithful objective function unconcerned about its convexity. We evaluated our framework on a variety of histology and microscopy images to segment potentially overlapping cells with complex topology. Our experiments confirmed the generality, reproducibility and improved accuracy of our approach compared to competing methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, S., Veltri, R., Epstein, J.I., Christudass, C., Madabhushi, A.: Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 661–669. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bernardis, E., et al.: Pop out many small structures from a very large microscopic image. MedIA 15(5), 690–707 (2011)Google Scholar
  3. 3.
    Cheng, L., Ye, N., Yu, W., Cheah, A.: Discriminative segmentation of microscopic cellular images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 637–644. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., et al.: Combining point distribution models with shape models based on finite element analysis. Image Vis. Comp. 13(5), 403–409 (1995)CrossRefGoogle Scholar
  5. 5.
    Delong, A., et al.: Globally optimal segmentation of multi-region objects. In: ICCV, pp. 285–292 (2009)Google Scholar
  6. 6.
    Graf, F., Grzegorzek, M., Paulus, D.: Counting lymphocytes in histopathology images using connected components. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 263–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gurcan, M.N., Madabhushi, A., Rajpoot, N.: Pattern recognition in histopathological images: An ICPR 2010 contest. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 226–234. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hamarneh, G., Jassi, P., Tang, L.: Simulation of ground-truth validation data via physically-and statistically-based warps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 459–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kuse, M., Sharma, T., Gupta, S.: A classification scheme for lymphocyte segmentation in H&E stained histology images. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 235–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kuse, M., et al.: Local isotropic phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol. Inf. 2 (2011)Google Scholar
  11. 11.
    Mao, K.Z., et al.: Supervised learning-based cell image segmentation for p53 immunohistochemistry. IEEE TBE 53(6), 1153–1163 (2006)Google Scholar
  12. 12.
    Panagiotakis, C., Ramasso, E., Tziritas, G.: Lymphocyte segmentation using the transferable belief model. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 253–262. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Turner, A., et al.: Obtaining multiple distinct solutions with genetic algorithm niching methods. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 451–460. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Wu, X., et al.: Embedding topic discovery in conditional random fields model for segmenting nuclei using multispectral data. IEEE TBE 59(6), 1539–1549 (2012)Google Scholar
  15. 15.
    Yang, L., Tuzel, O., Meer, P., Foran, D.J.: Automatic image analysis of histopathology specimens using concave vertex graph. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 833–841. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masoud S. Nosrati
    • 1
  • Ghassan Hamarneh
    • 1
  1. 1.Medical Image Analysis Lab.Simon Fraser UniversityCanada

Personalised recommendations