Advertisement

Persistent Homological Sparse Network Approach to Detecting White Matter Abnormality in Maltreated Children: MRI and DTI Multimodal Study

  • Moo K. Chung
  • Jamie L. Hanson
  • Hyekyoung Lee
  • Nagesh Adluru
  • Andrew L. Alexander
  • Richard J. Davidson
  • Seth D. Pollak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

We present a novel persistent homological sparse network analysis framework for characterizing white matter abnormalities in tensor-based morphometry (TBM) in magnetic resonance imaging (MRI). Traditionally TBM is used in quantifying tissue volume change in each voxel in a massive univariate fashion. However, this obvious approach cannot be used in testing, for instance, if the change in one voxel is related to other voxels. To address this limitation of univariate-TBM, we propose a new persistent homological approach to testing more complex relational hypotheses across brain regions. The proposed methods are applied to characterize abnormal white matter in maltreated children. The results are further validated using fractional anisotropy (FA) values in diffusion tensor imaging (DTI).

Keywords

Fractional Anisotropy Adjacency Matrix Betti Number White Matter Abnormality Jacobian Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12, 26–41 (2008)CrossRefGoogle Scholar
  2. 2.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2, 189–210 (1995)CrossRefGoogle Scholar
  3. 3.
    Hanson, J.L., Adluru, N., Chung, M.K., Alexander, A.L., Davidson, R.J., Pollak, S.D.: Early neglect is associated with alterations in white matter integrity and cognitive functioning. In: Child Development (in press, 2013)Google Scholar
  4. 4.
    Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E.: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. NeuroImage 50, 935–949 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, H., Chung, M.K., Kang, H., Kim, B.-N., Lee, D.S.: Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 302–309. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Mazumder, R., Hastie, T.: Exact covariance thresholding into connected components for large-scale graphical lasso. The Journal of Machine Learning Research 13, 781–794 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moo K. Chung
    • 1
  • Jamie L. Hanson
    • 1
  • Hyekyoung Lee
    • 2
  • Nagesh Adluru
    • 1
  • Andrew L. Alexander
    • 1
  • Richard J. Davidson
    • 1
  • Seth D. Pollak
    • 1
  1. 1.University of Wisconsin-MadisonUSA
  2. 2.Seoul National UniversityKorea

Personalised recommendations