Iterative Closest Curve: A Framework for Curvilinear Structure Registration Application to 2D/3D Coronary Arteries Registration

  • Thomas Benseghir
  • Grégoire Malandain
  • Régis Vaillant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

Treatment coronary arteries endovascular involves catheter navigation through patient vasculature. The projective angiography guidance is limited in the case of chronic total occlusion where occluded vessel can not be seen. Integrating standard preoperative CT angiography information with live fluoroscopic images addresses this limitation but requires alignment of both modalities.

This article proposes a structure-based registration method that intrinsically preserves both the geometrical and topological coherencies of the vascular centrelines to be registered, by the means of a dedicated curve-to-curve distance pairs of closest curves are identified, while pairing their points. Preliminary experiments demonstrate that the proposed approach performs better than the standard Iterative Closest Point method giving a wider attraction basin and improved accuracy.

Keywords

registration curvilinear structure ICP chronic total occlusion CTO coronary X-ray computed tomography angiography CTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt, H., Godau, M.: Measuring the resemblance of polygonal curves. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, SCG 1992, pp. 102–109. ACM, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Charnoz, A., Agnus, V., Malandain, G., Forest, C., Tajine, M., Soler, L.: Liver registration for the follow-up of hepatic tumors. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 155–162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)Google Scholar
  5. 5.
    Granger, S., Pennec, X., Roche, A.: Rigid point-surface registration using an EM variant of ICP for computer guided oral implantology. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 752–761. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Groher, M., Zikic, D., Navab, N.: Deformable 2D-3D registration of vascular structures in a one view scenario. IEEE Transactions on Medical Imaging 28(6), 847–860 (2009)CrossRefGoogle Scholar
  7. 7.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2), 130–171 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Metz, C., Schaap, M., Klein, S., Baka, N., Neefjes, L., Schultz, C., Niessen, W., van Walsum, T.: Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography. IEEE Transactions on Medical Imaging 32(5), 919–931 (2013)CrossRefGoogle Scholar
  9. 9.
    Rivest-Henault, D., Sundar, H., Cheriet, M.: Nonrigid 2D/3D registration of coronary artery models with live fluoroscopy for guidance of cardiac interventions. IEEE Transactions on Medical Imaging 31(8), 1557–1572 (2012)CrossRefGoogle Scholar
  10. 10.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3-D Digital Imaging and Modeling. IEEE (2001)Google Scholar
  11. 11.
    Serradell, E., Glowacki, P., Kybic, J., Moreno-Noguer, F., Fua, P.: Robust Non-Rigid Registration of 2D and 3D Graphs. In: Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  12. 12.
    Shah, P.B.: Management of coronary chronic total occlusion. Circulation 123(16), 1780–1784 (2011)CrossRefGoogle Scholar
  13. 13.
    Sundar, H., Khamene, A., Xu, C., Sauer, F., Davatzikos, C.: A novel 2D-3D registration algorithm for aligning fluoro images with 3D pre-op CT/MR images. In: Medical Imaging, vol. 6141, p. 61412K. SPIE (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Benseghir
    • 1
    • 2
  • Grégoire Malandain
    • 2
  • Régis Vaillant
    • 1
  1. 1.GE-HealthcareBucFrance
  2. 2.INRIASophia AntipolisFrance

Personalised recommendations