Advertisement

Relevant Clouds: Leveraging Relevance Feedback to Build Tag Clouds for Image Search

  • Luis A. Leiva
  • Mauricio Villegas
  • Roberto Paredes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8138)

Abstract

Previous work in the literature has been aimed at exploring tag clouds to improve image search and potentially increase retrieval performance. However, to date none has considered the idea of building tag clouds derived from relevance feedback. We propose a simple approach to such an idea, where the tag cloud gives more importance to the words from the relevant images than the non-relevant ones. A preliminary study with 164 queries inspected by 14 participants over a 30M dataset of automatically annotated images showed that 1) tag clouds derived this way are found to be informative: users considered roughly 20% of the presented tags to be relevant for any query at any time; and 2) the importance given to the tags correlates with user judgments: tags ranked in the first positions tended to be perceived more often as relevant to the topic that users had in mind.

Keywords

Image Search and Retrieval Relevance Feedback Tag Clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and exploration in the tag space. In: Collaborative Web Tagging (2006)Google Scholar
  2. 2.
    Callegari, J., Morreale, P.: Assessment of the utility of tag clouds for faster image retrieval. In: Proc. MIR (2010)Google Scholar
  3. 3.
    Ganchev, K., Hall, K., McDonald, R., Petrov, S.: Using search-logs to improve query tagging. In: Proc. ACL (2012)Google Scholar
  4. 4.
    Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: Proc. InSciT (2006)Google Scholar
  5. 5.
    Leiva, L.A., Villegas, M., Paredes, R.: Query refinement suggestion in multimodal interactive image retrieval. In: Proc. ICMI (2011)Google Scholar
  6. 6.
    Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: Proc. WWW (2009)Google Scholar
  7. 7.
    Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content resources. In: Proc. WSDM (2009)Google Scholar
  8. 8.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content-based image retrieval. T. Circ. Syst. Vid. 8(5) (1998)Google Scholar
  9. 9.
    Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. WWW (2008)Google Scholar
  10. 10.
    Trattner, C., Lin, Y.-L., Parra, D., Yue, Z., Real, W., Brusilovsky, P.: Evaluating tag-based information access in image collections. In: Proc. HT (2012)Google Scholar
  11. 11.
    Villegas, M., Paredes, R.: Image-text dataset generation for image annotation and retrieval. In: Proc. CERI (2012)Google Scholar
  12. 12.
    Zhang, C., Chai, J.Y., Jin, R.: User term feedback in interactive text-based image retrieval. In: Proc. SIGIR (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis A. Leiva
    • 1
  • Mauricio Villegas
    • 1
  • Roberto Paredes
    • 1
  1. 1.ITI/DSICUniversitat Politècnica de ValènciaSpain

Personalised recommendations