DFTCalc: A Tool for Efficient Fault Tree Analysis

  • Florian Arnold
  • Axel Belinfante
  • Freark Van der Berg
  • Dennis Guck
  • Mariëlle Stoelinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8153)

Abstract

Effective risk management is a key to ensure that our nuclear power plants, medical equipment, and power grids are dependable; and it is often required by law. Fault Tree Analysis (FTA) is a widely used methodology here, computing important dependability measures like system reliability. This paper presents DFTCalc, a powerful tool for FTA, providing (1) efficient fault tree modelling via compact representations; (2) effective analysis, allowing a wide range of dependability properties to be analysed (3) efficient analysis, via state-of-the-art stochastic techniques; and (4) a flexible and extensible framework, where gates can easily be changed or added. Technically, DFTCalc is realised via stochastic model checking, an innovative technique offering a wide plethora of powerful analysis techniques, including aggressive compression techniques to keep the underlying state space small.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: Dftcalc: a tool for efficient fault tree analysis (extended version). Technical Report TR-CTIT-13-13, CTIT, University of Twente, Enschede (June 2013)Google Scholar
  2. 2.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003), doi:10.1109/TSE.2003.1205180Google Scholar
  3. 3.
    Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theoretical Computer Science 345(1), 2–26 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  5. 5.
    Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: probability models. Holt, Rinehart and Winston (1975)Google Scholar
  6. 6.
    Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using Input/Output interactive Markov chains. In: DSN, pp. 708–717 (2007)Google Scholar
  7. 7.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE TDSC 7, 128–143 (2010)Google Scholar
  8. 8.
    Boudali, H., Dugan, J.: A continuous-time bayesian network reliability modeling and analysis framework. IEEE Transactions on Reliability 55(1), 86–97 (2006)CrossRefGoogle Scholar
  9. 9.
    Boudali, H., Dugan, J.B.: A Bayesian network reliability modeling and analysis framework. IEEE Transactions on Reliability 55, 86–97 (2005)CrossRefGoogle Scholar
  10. 10.
    Boudali, H., Nijmeijer, A.P., Stoelinga, M.: DFTSim: A simulation tool for extended dynamic fault trees. In: ANSS 2009, p. 31 (2009)Google Scholar
  11. 11.
    Coppit, D., Sullivan, K.: Galileo: A tool built from mass-market applications. In: International Conference on Software Engineering, pp. 750–753 (2000)Google Scholar
  12. 12.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A toolbox for the construction and analysis of distributed processes. International Journal on Software Tools for Technology Transfer, 1–19 (2012)Google Scholar
  13. 13.
    Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 8–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Katoen, J.-P., Zapreev, I., Hahn, E.M., Hermanns, H., Jansen, D.: The ins and outs of the probabilistic model checker MRMC. Perf. Eval. 68(2), 90–104 (2011)CrossRefGoogle Scholar
  16. 16.
    Manian, R., Bechta Dugan, J., Coppit, D., Sullivan, K.: Combining various solution techniques for dynamic fault tree analysis of computer systems. In: Proc. IEEE Int. High-Assurance Systems Engineering Symposium, pp. 21–28 (1998)Google Scholar
  17. 17.
    Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D.: A tool for automatically translating dynamic fault trees into dynamic Bayesian networks. In: RAMS, pp. 434–441 (2006)Google Scholar
  18. 18.
  19. 19.
    Veseley, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook, NUREG-0492. Technical report, NASA (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Arnold
    • 1
  • Axel Belinfante
    • 1
  • Freark Van der Berg
    • 1
  • Dennis Guck
    • 1
  • Mariëlle Stoelinga
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations