A Causality Analysis Framework for Component-Based Real-Time Systems

  • Shaohui Wang
  • Anaheed Ayoub
  • BaekGyu Kim
  • Gregor Gössler
  • Oleg Sokolsky
  • Insup Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8174)


We propose an approach to enhance the fault diagnosis in black-box component-based systems, in which only events on component interfaces are observable, and assume that causal dependencies between component interface events within components are not known. For such systems, we describe a causality analysis framework that helps us establish the causal relationship between component failures and system failures, given an observed system execution trace. The analysis is based on a formalization of counterfactual reasoning, and applicable to real-time systems. We illustrate the analysis with a case study from the medical device domain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atmel Corporation. AT91SAM7S-EK Evaluation Board User Guide (2007), http://www.atmel.com/Images/doc6112.pdf
  3. 3.
    Barry, R.: FreeRTOS User Manual, http://www.freertos.org
  4. 4.
    Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterexamples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 94–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bhattacharyya, S., Huang, Z., Chandra, V., Kumar, R.: A discrete event systems approach to network fault management: detection and diagnosis of faults. In: American Control Conference, vol. 6, pp. 5108–5113 (2004)Google Scholar
  6. 6.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)CrossRefMATHGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Dubey, A., Karsai, G., Kereskenyi, R., Mahadevan, N.: Towards a real-time component framework for software health management. Technical Report ISIS-09-111, Vanderbilt University (2009)Google Scholar
  9. 9.
  10. 10.
    Generic PCA Infusion Pump Reference Implementation, http://rtg.cis.upenn.edu/medical/gpca/gpca.html
  11. 11.
    Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis in contract violation. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–284. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Safety Requirements for the Generic PCA Pump, http://rtg.cis.upenn.edu/gip-docs/Safety_Requirements_GPCA.doc
  13. 13.
    Halpern, J.Y., Pearl, J.: Causes and Explanations: A Structural-Model Approach. Part I: Causes. The British Journal for the Philosophy of Science 56(4), 843–887 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via causality to fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 71–84. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. Technical Report soft-12-02, University of Konstanz (2012)Google Scholar
  16. 16.
    Lewis, D.: Counterfactuals, 2nd edn. Wiley-Blackwell (2001)Google Scholar
  17. 17.
    Mahadevan, N., Abdelwahed, S., Dubey, A., Karsai, G.: Distributed diagnosis of complex systems using timed failure propagation graph models. In: The IEEE Systems Readiness Technology Conference, pp. 1–6 (2010)Google Scholar
  18. 18.
    Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman and Hall/CRC (1997)Google Scholar
  19. 19.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (2009)Google Scholar
  20. 20.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977, pp. 46–57 (1977)Google Scholar
  21. 21.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Riegelman, R., et al.: Contributory cause: unnecessary and insufficient. Postgrad. Med. 66(2), 177 (1979)Google Scholar
  23. 23.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology 4(2), 105–124 (1996)CrossRefGoogle Scholar
  24. 24.
    Tian, J., Pearl, J.: Probabilities of causation: Bounds and identification. Annals of Mathematics and Artificial Intelligence 28, 287–313 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Tripakis, S.: A combined on-line/off-line framework for black-box fault diagnosis. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 152–167. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, S., Ayoub, A., Ivanov, R., Sokolsky, O., Lee, I.: Contract-based blame assignment by trace analysis. In: HiCoNS, pp. 117–125 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shaohui Wang
    • 1
  • Anaheed Ayoub
    • 1
  • BaekGyu Kim
    • 1
  • Gregor Gössler
    • 2
  • Oleg Sokolsky
    • 1
  • Insup Lee
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaUSA
  2. 2.INRIA GrenobleRhône-AlpesFrance

Personalised recommendations