Unified Energy Agents as a Base for the Systematic Development of Future Energy Grids

  • Christian Derksen
  • Tobias Linnenberg
  • Rainer Unland
  • Alexander Fay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)


The need for the application of software agents and agent-technologies in highly diversified future energy grids is widely accepted today. Nevertheless, the very general concept of the agent paradigm still leads to misunderstandings and to the fact that agents are meant and utilized for very different tasks. Accordingly, the approaches that were presented in the Smart Gird area have major weaknesses in terms of comparability and a subsequently large-scale use. We claim that the introduction of a unified definition of an Energy Agent will help to create a coherent picture that can accelerate further discussions and the conversion of the energy supply. Considering a development cycle that consists of modeling and implementation, simulation, test-bed application and the deployment to real systems, we present here our definition of an Energy Agent that takes into account the law of conservation of energy. Further, we present a classification of Energy Agents according to their sophistication and integration level and outline the need for individual but standardized energetic option models.


MultiAgent System Energy Agent Smart Grid Integration Level Energy Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ilic, M.D., Allen, H., Chapman, W., King, C.A., Lang, J.H., Litvinov, E.: Preventing Future blackouts by Means of Enhanced electric Power Systems Control From Complexity to Order. Proceedings of the IEEE (11) (2005)Google Scholar
  2. 2.
    Setiawan, E.A.: Concept and Controllability of Virtual Power Plant. Kassel University Press (2007)Google Scholar
  3. 3.
    Nestle, D., Ringelstein, J.: Integration of DER into Distribution Grid Operation and Decentralized Energy Management. In: Smart Grids Europe 2009, Barcelona (March 19, 2009)Google Scholar
  4. 4.
    Daneels, A., Salter, W.: What is SCADA? In: International Conference on Accelerator and Large Experimental Physics Control Systems, Trieste (1999)Google Scholar
  5. 5.
    Huhns, M.N., Stephens, L.M.: Multiagent Systems and Societies of Agents. In: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT press (1999)Google Scholar
  6. 6.
    Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Agent Technology. Springer (1998)Google Scholar
  7. 7.
    Keilar, N.: Concept to Integrate Distributed Generation into the German Power Grid Intended for Multi-Agent System Realisation. Thesis, (version: April 2013)
  8. 8.
    Li, H., Sun, H., Wen, J., Cheng, S., He, H.: A Fully Decentralized Multi-Agent System for Intelligent Restoration of Power Distribution Network Incorporating Distributed Generations. IEEE Comput. Intell. Mag. 7, 66–76 (2012)CrossRefGoogle Scholar
  9. 9.
    Kok, K., Warmer, C., Kamphuis, R., Mellstrand, P., Gustavsson, R.: Distributed Control in the Electricity Infrastructure. In: Proceedings of the International Conference on Future Power Systems (2005)Google Scholar
  10. 10.
    Lehnhoff, S.: Dezentrales vernetztes Energiemanagement - Ein Ansatz auf Basis eines verteilten Realzeit-Multiagentensystems. Vieweg + Teubner (2010)Google Scholar
  11. 11.
    Platt, G.: The Decentralised Control of Electricity Networks- Intelligent and Self-Healing Systems. In: Grid-Interop-Forum 2007, pp. 1–6 (2007)Google Scholar
  12. 12.
    Linnenberg, T., Wior, I., Schreiber, S., Fay, A.: A Market-Based Multi-Agent System for Decentralized Power and Grid Control. In: Proceedings of IEEE-ETFA (2011), doi:10.1109/ETFA.2011.6059126Google Scholar
  13. 13.
    Derksen, C., Branki, C., Unland, R.: A framework for agent-based simula-tions of hybrid energy infrastructures. In: Ganzha, M., Macias-zek, L.A., Paprzycki, M. (eds.) FedCSIS (2012)Google Scholar
  14. 14.
    Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of BDI agents. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 185–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley & Sons (July 2009)Google Scholar
  16. 16.
    Moss, S., Davidsson, P. (eds.): MABS 2000. LNCS (LNAI), vol. 1979. Springer, Heidelberg (2001), http://¬ Google Scholar
  17. 17.
    Davidsson, P.: Multi agent based simulation: Beyond social simulation. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 97–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 3), 7280–7287 (2002)Google Scholar
  19. 19.
    Drogoul, A., Vanbergue, D., Meurisse, T.: Multi-agent based simulation: Where are the agents? In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    RegenerativeKraftwerke Harz: REG MOD HARZ. Rege- nerative Modellregion Harz Homepage, (version: April 2013)
  21. 21.
    Faruqui, A., Sergici, S.: Household Response to Dynamic Pricing of Electricity—A Survey of the Experimental Evidence. Journal of Regulatory Economics (2013), (version: April 2013)
  22. 22.
    Laskowski, M.: E-DeMa – development and demonstration of locally networked energy systems to the E-Energy marketplace of the future. E-DeMa Homepage, (version: April 2013)
  23. 23.
    AG, EWE: eTelligence. eTelligence Homepage, (version: April 2013)
  24. 24.
    Utilicount GmbH & Co. KG: Smart Watts - Startseite. Smart Watts Homepage, (version: April 2013)
  25. 25.
    MVV Energie AG: moma – The power supply system gets intelligent. Modellstadt Mannheim Homepage., (version: April 2013)
  26. 26.
    Boehm, B.: Guidelines for verifying and validating software requirements and design specifications. In: EURO. IFIP, vol. 79, pp. 711–719 (1979)Google Scholar
  27. 27.
    Abel, D., Bollig, A.: Rapid Control Prototyping - Methods and Application. 1. Aufl. Springer, Berlin (2006) ISBN 3-540-29524-0Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Derksen
    • 1
  • Tobias Linnenberg
    • 2
  • Rainer Unland
    • 1
  • Alexander Fay
    • 2
  1. 1.DAWISUniversität Duisburg-EssenEssenGermany
  2. 2.IfAHelmut-Schmidt-Universität HamburgHamburgGermany

Personalised recommendations