AbstractSwarm – A Generic Graphical Modeling Language for Multi-Agent Systems

  • Daan Apeldoorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)


Many different approaches exist for modeling multi-agent systems: The variety ranges from frameworks dedicated to a specific problem domain to very flexible systems similar to text-based or graphical programming languages. While problem domain specific frameworks have an obvious lack of flexibility (and thus can only be configured for a small set of similar problems), the more flexible systems enforce detailed modeling, in which many details (e.g. the agent behavior) have to be implemented manually. As a consequence, the results obtained from such systems are often very heterogeneous and incomparable across problem domains. In this paper, a graphical modeling language is introduced that focuses on a common base for multi-agent systems. By strictly separating the modeling of agent tasks from the agent behavior, the same agent models can be reused for different scenarios and the obtained results will be comparable across problem domains.


graphical modeling language logistics multi-agent systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelraouf, I., Abdennadher, S., Gervet, C.: A Visual Entity-Relationship Model for Constraint-Based University Timetabling. In: Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Tompits, H., Umeda, M., Wolf, A. (eds.) 19th International Conference on Applications of Declarative Programming and Knowledge Management, pp. 183–194. TU Wien, Wien (2011)Google Scholar
  2. 2.
    Apeldoorn, D.: Entwicklung eines abstrakten Modells zur Modellierung von Logistikproblemen. Johannes Gutenberg-Univsersität Mainz, Mainz (2006)Google Scholar
  3. 3.
    Bloech, J., Ihde, G.B. (eds.): Vahlens Großes Logistik Lexikon. C.H. Beck & Franz Vahlen, München (1997)Google Scholar
  4. 4.
    Henriksen, J.O.: SLX: The X is for Extensibility. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the 2000 Winter Simulation Conference, pp. 183–190. IEEE Press, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Klaus, P., Krieger, W. (eds.): Gabler Lexikon Logistik: Management logistischer Netzwerke und Flüsse. Gabler, Wiesbaden (2004)Google Scholar
  6. 6.
    Klügl, F.: SeSAm: Visual Programming and Participatory Simulation for Agent-Based Models. In: Weyns, H., Uhrmacher, A. (eds.) Multi-Agent Systems: Simulation and Applications, pp. 477–508. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  7. 7.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A Multi-Agent Simulation Environment. Simulation: Transactions of the Society for Modeling and Simulation International 81(7), 517–527 (2005)CrossRefGoogle Scholar
  8. 8.
    Pfohl, H.-C.: Logistikprobleme: Betriebswirtschaftliche Grundlagen. Springer, Berlin (2000)Google Scholar
  9. 9.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daan Apeldoorn
    • 1
  1. 1.Dept. of Computer ScienceFernUniversität in HagenHagenGermany

Personalised recommendations