AMASON: Abstract Meta-model for Agent-Based SimulatiON

  • Franziska Klügl
  • Paul Davidsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)


The basic prerequisite for methodological advance in Multi-Agent Based Modelling and Simulation is a clear, ideally formally-grounded, concept of our subject. A commonly accepted, implementation-independent meta-model may improve the status of MABS as a scientific field providing a solid foundation that can be used for describing, comparing, analysing, and understanding MABS models. In this contribution, we present an attempt formalizing a general view of MABS models by defining the AMASON meta-model that captures the basic structure and dynamics of a MABS model.


Multiagent System Autonomous Agent Social Simulation MABS Model Sugarscape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandini, S., Manzoni, S., Vizzari, G.: Agent based modeling and simulation: An informatics perspective. J. Artificial Societies and Social Simulation 12(4) (2009)Google Scholar
  2. 2.
    Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A study of some multi-agent meta-models. In: Odell, J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J., Pavón, J., Gonzalez-Perez, C.: FAML: A generic metamodel for MAS development. IEEE Transactions on Software Engineering 35(6), 841–863 (2009)CrossRefGoogle Scholar
  4. 4.
    Dinu, R., Stratulat, T., Ferber, J.: A formal approach to MASQ. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, CA, pp. 1443–1444 (May 2010)Google Scholar
  5. 5.
    D’Inverno, M., Luck, M.: Understanding Agent Systems, 2nd edn. Springer (2004)Google Scholar
  6. 6.
    Epstein, J.M., Axtell, R.: Growing Artificial Societies - Social Science from the Bottom Up. The MIT Press (1996)Google Scholar
  7. 7.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: ICMAS 1998: Proceedings of the 3rd International Conference on Multi Agent Systems, pp. 128–135. IEEE Computer Society, Washington, DC (1998)CrossRefGoogle Scholar
  8. 8.
    Ferber, J., Müller, J.-P.: Influences and reactions: a model of situated multiagent systems. In: Proc. of the ICMAS 1996. AAAI Press (1996)Google Scholar
  9. 9.
    Fuentes-Fernandez, R., Galan, J.M., Hassan, S., Lopez-Paredes, A., Pavon, J.: Application of model driven techniques for agent-based simulation. In: Advances in Practical Applications of Agents and Multiagent Systems, PAAMS 2010, Salamanca, Spain (April 2010)Google Scholar
  10. 10.
    Garro, A., Russo, W.: easyABM: A domain-expert oriented methodology for agent-based modeling and simulation. Simulation Modelling Practice and Theory 18, 1453–1467 (2010)CrossRefGoogle Scholar
  11. 11.
    Genesereth, M.L., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann (1987)Google Scholar
  12. 12.
    Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-based social simulations. Journal of Artificial Societies and Social Simulation 16(2), 9 (2013)Google Scholar
  13. 13.
    Gilbert, N.: Agent-based Models. Sage Publications (2008)Google Scholar
  14. 14.
    Grimm, V., et al.: A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115–126 (2006)CrossRefGoogle Scholar
  15. 15.
    Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform independent meta model for multi-agent systems. Autonomous Agents and Multi-Agent Systems 18(2), 239–266 (2009)CrossRefGoogle Scholar
  16. 16.
    Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems 14(1), 87–116 (2007)CrossRefGoogle Scholar
  17. 17.
    Hocaoglu, M.F., Firat, C., Sarjoughian, H.S.: Devs/rap: Agent-based simulation. In: Proc. of the 2002 AIS Conference (AI, Simulation and Planning in Highly Autonomous Systems), Lisboa (April 2002)Google Scholar
  18. 18.
    Klügl, F.: Towards a formal framework for multi-agent simulation models. Technical Report 412, Institute of Computer Science, University of Würzburg (2007)Google Scholar
  19. 19.
    Klügl, F., Fehler, M., Herrler, R.: About the role of the environment in multi-agent simulations. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 127–149. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Livet, P., Muller, J.-P., Phan, D., Sanders, L.: Ontology, a mediator for agent-based modeling in social science. Journal of Artificial Societies and Social Simulation 13(1), 3 (2010)Google Scholar
  21. 21.
    Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Journal of Simulation 4, 151–162 (2010)CrossRefGoogle Scholar
  22. 22.
    Müller, J.-P.: Towards a formal semantics of event-based multi-agent simulations. In: David, N., Sichman, J.S. (eds.) MAPS 2008. LNCS, vol. 5269, pp. 110–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    North, M.J., Macal, C.M.: Managing BusinessComplexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press (2007)Google Scholar
  24. 24.
    Oechslein, C.: Vorgehensmodell mit integrierter Spezifikations- und Implementierungssprache zur Multiagentensimulation. PhD thesis, Computer Science Faculty, University of Würzburg, Germany (2003)Google Scholar
  25. 25.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems 17, 432–456 (2008)CrossRefGoogle Scholar
  26. 26.
    Parker, M.T., North, M.J., Collier, N.T., Howe, T.R., Vos, J.R.: Agent-based meta-models. In: Sallach, D.L., Macal, C.M., North, M.J. (eds.) Proc. the Agent 2006 Conf. on Social Agents: Results and Prospects, pp. 69–79 (2006)Google Scholar
  27. 27.
    Railsback, S.F., Grimm, V.: Agent-based and Individual-based Modeling: A Practical Introduction. Princeton University Press (2011)Google Scholar
  28. 28.
    Siegfried, R., Lehmann, A., Khayari, R.E.A., Kiesling, T.: A reference model for agent-based modeling and simulation. In: Proceedings of SpringSim 2009, The 2009 Spring Simulation Multiconference, pp. 23:1–23:8 (2009)Google Scholar
  29. 29.
    Uhrmacher, A.M.: Object-oriented and agent-oriented simulation-implications for social science applications. In: Doran, J., Gilbert, N., Müller, U., Troitzsch, K.G. (eds.) Social Science Micro Simulation, pp. 432–447. Springer, Berlin (1996)Google Scholar
  30. 30.
    Urban, C.: PECS: A reference model for the simulation of multi-agent systems. In: Suleiman, R., Troitzsch, K.G., Gilbert, N. (eds.) Tools and Techniques for Social Science Simulation, pp. 83–114. Physica-Verlag (2000)Google Scholar
  31. 31.
    Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundamenta Informaticae 63(2-3), 125–158 (2004)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wooldridge, M.J.: Introduction to Multiagent Systems, 2nd edn. John Wiley & Sons (2009)Google Scholar
  33. 33.
    Zeigler, B.P.: Object Oriented Simulation With Hierarchical Modular Models: Intelligent Agents and Endomorphic Systems. Academic Press (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Franziska Klügl
    • 1
  • Paul Davidsson
    • 2
  1. 1.School of Science and TechnologyÖrebro UniversityÖrebroSweden
  2. 2.School of TechnologyMalmö UniversityMalmöSweden

Personalised recommendations