Repeated Sequential Single-Cluster Auctions with Dynamic Tasks for Multi-Robot Task Allocation with Pickup and Delivery

  • Bradford Heap
  • Maurice Pagnucco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)

Abstract

In this paper we study an extension of the multi-robot task allocation problem for online tasks requiring pickup and delivery. We extend our previous work on sequential single-cluster auctions to handle this more complex task allocation problem. Our empirical experiments analyse this technique in the domain of an environment with dynamic task insertion. We consider the trade-off between solution quality and overall planning time in globally reallocating all uncompleted tasks versus local replanning upon the insertion of a new task. Our key result shows that global reallocation of all uncompleted tasks outperforms local replanning in minimising robot path distances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P.M., Kleywegt, A.J.: Robot exploration with combinatorial auctions. In: IROS, pp. 1957–1962 (2003)Google Scholar
  2. 2.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  3. 3.
    Dias, M.B., Stentz, A.: Opportunistic optimization for market-based multirobot control. In: Intelligent Robots and Systems, vol. 3, pp. 2714–2720. IEEE (2002)Google Scholar
  4. 4.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)Google Scholar
  5. 5.
    Fischer, K.: Cooperative transportation scheduling: An application domain for dai. Applied Artificial Intelligence 10(1), 1–34 (1996)CrossRefGoogle Scholar
  6. 6.
    Heap, B., Pagnucco, M.: Sequential single-cluster auctions for robot task allocation. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 412–421. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Heap, B., Pagnucco, M.: Analysis of cluster formation techniques for multi-robot task allocation using sequential single-cluster auctions. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 839–850. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Heap, B., Pagnucco, M.: Repeated sequential auctions with dynamic task clusters. In: AAAI (2012)Google Scholar
  9. 9.
    Koenig, S., Keskinocak, P., Tovey, C.A.: Progress on agent coordination with cooperative auctions. In: AAAI (2010)Google Scholar
  10. 10.
    Koenig, S., Tovey, C.A., Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A.J., Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordination. In: AAAI, pp. 1625–1629 (2006)Google Scholar
  11. 11.
    Koenig, S., Tovey, C.A., Zheng, X., Sungur, I.: Sequential bundle-bid single-sale auction algorithms for decentralized control. In: IJCAI, pp. 1359–1365 (2007)Google Scholar
  12. 12.
    Kohout, R.C., Erol, K.: In-time agent-based vehicle routing with a stochastic improvement heuristic. In: AAAI, pp. 864–869 (1999)Google Scholar
  13. 13.
    Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A.J., Koenig, S., Tovey, C.A., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Robotics: Science and Systems, pp. 343–350 (2005)Google Scholar
  14. 14.
    Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. European Journal of Operational Research 181(1), 59–75 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nanjanath, M., Gini, M.L.: Dynamic task allocation for robots via auctions. In: ICRA, pp. 2781–2786 (2006)Google Scholar
  16. 16.
    Nanjanath, M., Gini, M.L.: Repeated auctions for robust task execution by a robot team. Robotics and Autonomous Systems 58(7), 900–909 (2010)CrossRefGoogle Scholar
  17. 17.
    Sandholm, T.: Contract types for satisficing task allocation: I theoretical results. In: Proceedings of the AAAI Spring Symposium: Satisficing Models, pp. 68–75 (1998)Google Scholar
  18. 18.
    Sariel, S., Balch, T.R.: Efficient bids on task allocation for multi-robot exploration. In: FLAIRS Conference, pp. 116–121 (2006)Google Scholar
  19. 19.
    Schoenig, A., Pagnucco, M.: Evaluating sequential single-item auctions for dynamic task allocation. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 506–515. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Computers 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  21. 21.
    Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Tovey, C., Lagoudakis, M., Jain, S., Koenig, S.: The generation of bidding rules for auction-based robot coordination. Multi-Robot Systems III, 3–14 (2005)Google Scholar
  23. 23.
    Viguria, A., Maza, I., Ollero, A.: Set: An algorithm for distributed multirobot task allocation with dynamic negotiation based on task subsets. In: ICRA, pp. 3339–3344 (2007)Google Scholar
  24. 24.
    Zhang, K., Collins Jr., E.G., Shi, D.: Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction. TAAS 7(2), 21 (2012)CrossRefGoogle Scholar
  25. 25.
    Zheng, X., Koenig, S.: K-swaps: Cooperative negotiation for solving task-allocation problems. In: IJCAI, pp. 373–379 (2009)Google Scholar
  26. 26.
    Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: ICRA, pp. 1515–1522 (2005)Google Scholar
  27. 27.
    Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: ICRA, pp. 3016–3023 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bradford Heap
    • 1
  • Maurice Pagnucco
    • 1
  1. 1.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations