Efficient Visualization of Folksonomies Based on «Intersectors »

  • A. Mouakher
  • S. Heymann
  • S. Ben Yahia
  • B. Le Grand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)

Abstract

Social bookmarking systems have recently received an increasing attention in both academic and industrial communities. This success is owed to their ease of use that relies on a simple intuitive process, allowing their users to label diverse resources with freely chosen keywords aka tags. The obtained collections are known under the nickname of Folksonomy. In this paper, we introduce a new approach dedicated to the visualization of large folksonomies, based on the ”intersecting” minimal transversals. The main thrust of such an approach is the proposal of a reduced set of ”key” nodes of the folksonomy from which the remaining nodes would be faithfully retrieved. Thus, the user could navigate in the folksonomy through a folding/unfolding process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trabelsi, C., Jrad, A., Ben, S.: Yahia: Bridging folksonomies and domain ontologies: Getting out non-taxonomic relations. In: Proc. of the 2010 IEEE Intl. Conference on Data Mining Workshops, ICDMW 2010, pp. 369–379. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  2. 2.
    Lohmann, S., Díaz, P.: Representing and visualizing folksonomies as graphs: a reference model. In: Proc. of the Intl. Working Conference on Advanced Visual Interfaces, AVI 2012, pp. 729–732. ACM, New York (2012)CrossRefGoogle Scholar
  3. 3.
    Scripps, J., Tan, P.N., Esfahanian, A.H.: Node roles and community structure in networks. In: Proc. of the 1st Workshop on Web Mining and Social Network Analysis (SNA-KDD 2007), San José, California, pp. 26–35 (2007)Google Scholar
  4. 4.
    Opsahl, T., Hogan, B.: Growth mechanisms in continuously-observed networks: Communication in a facebook-like community. CoRR (2010)Google Scholar
  5. 5.
    Jelassi, N., Largeron, C., Ben Yahia, S.: TMD-Miner: Une nouvelle approche pour la détection des diffuseurs dans un système communautaire. In: Actes de la 12eme Conférence Intl.e Francophone EGC, Bordeaux, France, pp. 423–428 (2012)Google Scholar
  6. 6.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualization. In: Press, I.C.S. (ed.) Proc. IEEE Symposium on Visual Languages, Boulder, Colorado, pp. 336–343 (1996)Google Scholar
  7. 7.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Sen, S., Harper, M.F.M., Lapitz, A., Riedl, J.: The quest for quality tags. In: Proc. of the 2007 Intl. ACM Conference on Supporting Group Work, pp. 361–370. ACM (2007)Google Scholar
  10. 10.
    Krestel, R., Chen, L.: The art of tagging: Measuring the quality of tags. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 257–271. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Damme, C., Hepp, M., Coenen, T.: Quality Metrics for Tags of Broad Folksonomies. In: Proc. of I-semantics 2008, Graz, Austria (2008)Google Scholar
  12. 12.
    Gu, X., Wang, X., Li, R., Wen, K., Yang, Y., Xiao, W.: Measuring social tag confidence: is it a good or bad tag? In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 94–105. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lohmann, S., Ziegler, J., Tetzlaff, L.: Comparison of tag cloud layouts: Task-related performance and visual exploration. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009, Part I. LNCS, vol. 5726, pp. 392–404. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Kangpyo, L., Hyunwoo, K., Hyopil, S., Hyoung-Joo, K.: Folksoviz: A semantic relation-based folksonomy visualization using the wikipedia corpus. In: Proc. of the 10th Intl. Conference ACIS, pp. 24–29. IEEE Computer Society, Washington, DC (2009)Google Scholar
  15. 15.
    Lambiotte, R., Ausloos, M.: Collaborative tagging as a tripartite network. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 1114–1117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Dattolo, A., Pitassi, E.: Visualizing and managing folksonomies. In: Proc. of the Workshop on Semantic Adaptive Social Web, Girona, Spain, pp. 6–14. Springer (2011)Google Scholar
  17. 17.
    Ham, F.V., Perer, A.: “Search, show context, expand on demand”: Supporting large graph exploration with degree-of-interest. IEEE Trans. Vis. Comput. Graph. 15, 953–960 (2009)CrossRefGoogle Scholar
  18. 18.
    Le Grand, B.: Extraction d’information et visualisation de systèmes complexes sémantiquement structurés. Doctorat d’université, Paris. Université Pierre et Marie Curie (Décembre 2001)Google Scholar
  19. 19.
    Trabelsi, C., Jelassi, N., Ben Yahia, S.: Scalable mining of frequent tri-concepts from folksonomies. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS, vol. 7302, pp. 231–242. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Wasserman, S., Faust, K.: Social Network Analysis, methods and application (1994)Google Scholar
  21. 21.
    Scripps, J., Tan, P.N., Esfahanian, A.H.: Exploration of link structure and community-based node roles in network analysis. In: Proc. of the 7th IEEE Intl. Conference on Data Mining (ICDM 2007), pp. 649–654 (2007)Google Scholar
  22. 22.
    Forestier, M., Stavrianou, A., Velcin, J., Zighed, D.A.: Roles in social networks: Methodologies and research issues. Web Intelligence and Agent Systems 10, 117–133 (2012)Google Scholar
  23. 23.
    Borgatti, S.P., Everett, M.G.: Notions of Position in Social Network Analysis. Sociological Methodology 22, 1–35 (1992)CrossRefGoogle Scholar
  24. 24.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Intl. Conference, pp. 7–15. ACM, New York (2008)Google Scholar
  25. 25.
    Berge, C.: Hypergraphs: Combinatorics of finite sets, p. 256 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Mouakher
    • 1
  • S. Heymann
    • 2
  • S. Ben Yahia
    • 1
  • B. Le Grand
    • 3
  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.LIP6, CNRSUniversité Pierre et Marie CurieParisFrance
  3. 3.CRIUniversité Paris 1 Panthéon - SorbonneParisFrance

Personalised recommendations