Identification of MCI Using Optimal Sparse MAR Modeled Effective Connectivity Networks

  • Chong-Yaw Wee
  • Yang Li
  • Biao Jie
  • Zi-Wen Peng
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

Capability of detecting causal or effective connectivity from resting-state functional magnetic resonance imaging (R-fMRI) is highly desirable for better understanding the cooperative nature of the brain. Effective connectivity provides specific dynamic temporal information of R-fMRI time series and reflects the directional causal influence of one brain region over another. These causal influences among brain regions are normally extracted based on the concept of Granger causality. Conventionally, the effective connectivity is inferred using multivariate autoregressive (MAR) modeling with default model order q = 1, considering low frequency fluctuation of R-fMRI time series. This assumption, although reduces the modeling complexity, does not guarantee the best fitting of R-fMRI time series at different brain regions. Instead of using the default model order, we propose to estimate the optimal model order based upon MAR order distribution to better characterize these causal influences at each brain region. Due to sparse nature of brain connectivity networks, an orthogonal least square (OLS) regression algorithm is incorporated to MAR modeling to minimize spurious effective connectivity. Effective connectivity networks inferred using the proposed optimal sparse MAR modeling are applied to Mild Cognitive Impairment (MCI) identification and obtained promising results, demonstrating the importance of using optimal causal relationships between brain regions for neurodegeneration disorder identification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E.: Mild cognitive impairment - Clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999)CrossRefGoogle Scholar
  2. 2.
    Friston, K.: Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging. PLoS Biol. 7, e1000033 (2009)Google Scholar
  3. 3.
    Granger, C.W.J.: Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 37, 414–420 (1969)Google Scholar
  4. 4.
    Rajapakse, J.C., Zhou, J.: Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 37, 749–760 (2007)CrossRefGoogle Scholar
  5. 5.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)CrossRefGoogle Scholar
  6. 6.
    Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A.: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009)CrossRefGoogle Scholar
  7. 7.
    Goebel, R., Roebroeck, A., Kim, D.S., Formisano, E.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 21, 1251–1261 (2003)CrossRefGoogle Scholar
  8. 8.
    Harrison, L., Penny, W.D., Friston, K.: Multivariate autoregressive modeling of fMRI time series. Neuroimage 19, 1477–1491 (2003)CrossRefGoogle Scholar
  9. 9.
    Liao, W., Ding, J.D., Marinazzo, D., Xu, Q., Wang, Z., Yuan, C., Zhang, Z., Lu, G., Chen, H.: Small-world directed networks in the human brain: Multivariate Granger causality analysis of resting-state fMRI. Neuroimage 54, 2683–2694 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered functional connectivity in early Alzheimer’s disease: A resting-state fMRI study. Hum. Brain Mapp. 28, 967–978 (2007)CrossRefGoogle Scholar
  11. 11.
    Billings, S.A., Wei, H.-L.: Sparse model identification using a forward orthogonal regression algorithm aided by mutual information. IEEE T. Neural Networ. 18, 306–310 (2007)CrossRefGoogle Scholar
  12. 12.
    Schwarz, G.: Estimating Dimension of A Model. Ann. Stat. 6, 461–464 (1978)CrossRefMATHGoogle Scholar
  13. 13.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America 100, 253–258 (2003)CrossRefGoogle Scholar
  15. 15.
    Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Eustache, F., Baron, J.C.: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13, 1939–1943 (2002)CrossRefGoogle Scholar
  16. 16.
    Whitfield-Gabrieli, S., Ford, J.M.: Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012)CrossRefGoogle Scholar
  17. 17.
    Squire, L.R.: The legacy of patient H.M. for neuroscience. Neuron 61, 6–9 (2009)CrossRefGoogle Scholar
  18. 18.
    Cavanna, A.E., Trimble, M.R.: The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006)CrossRefGoogle Scholar
  19. 19.
    Miao, X., Wu, X., Li, R., Chen, K., Yao, L.: Altered Connectivity Pattern of Hubs in Default-Mode Network with Alzheimer’s Disease: An Granger Causality Modeling Approach. PLoS ONE 6, e25546 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chong-Yaw Wee
    • 1
  • Yang Li
    • 1
    • 2
  • Biao Jie
    • 1
    • 3
  • Zi-Wen Peng
    • 1
  • Dinggang Shen
    • 1
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillUSA
  2. 2.Beihang UniversityBeijingChina
  3. 3.Department of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations