Multifold Bayesian Kernelization in Alzheimer’s Diagnosis

  • Sidong Liu
  • Yang Song
  • Weidong Cai
  • Sonia Pujol
  • Ron Kikinis
  • Xiaogang Wang
  • Dagan Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

The accurate diagnosis of Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) is important in early dementia detection and treatment planning. Most of current studies formulate the AD diagnosis scenario as a classification problem and solve it using various machine learners trained with multi-modal biomarkers. However, the diagnosis accuracy is usually constrained by the performance of the machine learners as well as the methods of integrating the multi-modal data. In this study, we propose a novel diagnosis algorithm, the Multifold Bayesian Kernelization (MBK), which models the diagnosis process as a synthesis analysis of multi-modal biomarkers. MBK constructs a kernel for each biomarker that maximizes the local neighborhood affinity, and further evaluates the contribution of each biomarker based on a Bayesian framework. MBK adopts a novel diagnosis scheme that could infer the subject’s diagnosis by synthesizing the output diagnosis probabilities of individual biomarkers. The proposed algorithm, validated using multi-modal neuroimaging data from the ADNI baseline cohort with 85 AD, 169 MCI and 77 cognitive normal subjects, achieves significant improvements on all diagnosis groups compared to the state-of-the-art methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jack, C.R., Bernstein, M.A., et al.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. JMRI 127(4), 685–691 (2008)CrossRefGoogle Scholar
  2. 2.
    Park, H.: ISOMAP induced manifold embedding and its application to Alzheimer’s disease and mild cognitive impairment. Neurosci. Letters 513(2), 141–145 (2012)CrossRefGoogle Scholar
  3. 3.
    Risacher, S.L., Saykin, A.J., et al.: Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr. Alz. Res. 6(4), 347–361 (2009)CrossRefGoogle Scholar
  4. 4.
    Singh, N., Wang, A.Y., Sankaranarayanan, P., Fletcher, P.T., Joshi, S.: Genetic, structural and functional imaging biomarkers for early detection of conversion from MCI to AD. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 132–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, S., et al.: Neuroimaging biomarker based prediction of Alzheimer’s disease severity with optimized graph construction. In: ISBI 2013, pp. 1324–1327. IEEE (2013)Google Scholar
  6. 6.
    Ye, J., Farnum, M., et al.: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology 12(1), 46 (2012)CrossRefGoogle Scholar
  7. 7.
    Shen, L., et al.: Identifying neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 27–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Zhang, D., Wang, et al.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, S., Cai, W., et al.: Multi-channel brain atrophy pattern analysis in neuroimaging retrieval. In: ISBI 2013, pp. 206–209. IEEE (2013)Google Scholar
  10. 10.
    Lazebnik, S., Raginsky, M.: Supervised learning of quantizer codebooks by information loss minimization. PAMI 31(7), 1294–1309 (2009)CrossRefGoogle Scholar
  11. 11.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jagust, W.J., Bandy, D., et al.: The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimer’s & Dementia 6(3), 221–229 (2010)CrossRefGoogle Scholar
  13. 13.
    Jenkinson, M., Bannister, P., et al.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)CrossRefGoogle Scholar
  14. 14.
    Mazziotta, J., Toga, A., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Phil. Trans. Royal Soc. B Biol. Sci. 356(1412), 1293–1322 (2001)CrossRefGoogle Scholar
  15. 15.
    Schnabel, J.A., et al.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Heckemann, R.A., Keihaninejad, S., et al.: Automatic morphometry in Alzheimer’s disease and mild cognitive impairment. NeuroImage 56(4), 2024–2037 (2011)CrossRefGoogle Scholar
  17. 17.
    Pieper, S., Lorensen, B., et al.: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. In: ISBI 2006, pp. 698–701. IEEE (2006)Google Scholar
  18. 18.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM TIST 2(3), 27 (2011)Google Scholar
  19. 19.
    Delong, A., Osokin, A., et al.: Fast approximate energy minimization with label costs. IJCV 96(1), 1–27 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sidong Liu
    • 1
  • Yang Song
    • 1
  • Weidong Cai
    • 1
  • Sonia Pujol
    • 2
  • Ron Kikinis
    • 2
  • Xiaogang Wang
    • 3
  • Dagan Feng
    • 1
  1. 1.School of Information TechnologiesUniversity of SydneyAustralia
  2. 2.Harvard Medical SchoolBrigham & Women’s HospitalBostonUSA
  3. 3.Department of Electronic EngineeringChinese University of Hong KongHong Kong

Personalised recommendations