Advertisement

Respiratory Motion Compensation with Relevance Vector Machines

  • Robert Dürichen
  • Tobias Wissel
  • Floris Ernst
  • Achim Schweikard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

In modern robotic radiation therapy, tumor movements due to respiration can be compensated. The accuracy of these methods can be increased by time series prediction of external optical surrogates. An algorithm based on relevance vector machines (RVM) is introduced. We evaluate RVM with linear and nonlinear basis functions on a real patient data set containing 304 motion traces and compare it with a wavelet based least mean square algorithm (wLMS), the best algorithm for this data set so far. Linear RVM outperforms wLMS significantly and increases the prediction accuracy for 80.3 % of the data. We show that real time prediction is possible in case of linear RVM and discuss how the predicted variance can be used to construct promising hybrid algorithms, which further reduce the prediction error.

Keywords

respiratory motion compensation relevance vector machine radiotherapy bayesian learning 

References

  1. 1.
    Giraud, P., De Rycke, Y., Helfre, S., Voican, D., Guo, L., Rosenwald, J.-C., Keraudy, K., Housset, M., Touboul, E., Cosset, J.-M.: Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. International Journal of Radiation Oncology 51(4), 1081–1092 (2001)CrossRefGoogle Scholar
  2. 2.
    Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler, J.R.: Robotic Motion Compensation for Respiratory Movement during Radiosurgery. Journal of Computer Aided Surgery 5(4), 263–277 (2000)CrossRefGoogle Scholar
  3. 3.
    Krauss, A., Nill, S., Oelfke, U.: The comparative performance of four respiratory motion predictors for real-time tumour tracking. Physics in Medicine and Biology 56(16), 5303–5317 (2011)CrossRefGoogle Scholar
  4. 4.
    Riaz, N., Shanker, P., Wiersma, R., Gudmundsson, O., Weihua, M., Widrow, B., Xing, L.: Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression. Physics in Medicine and Biology 54, 5735–5748 (2009)CrossRefGoogle Scholar
  5. 5.
    Ernst, F., Dürichen, R., Schlaefer, A., Schweikard, A.: Evaluating and comparing algorithms for respiratory motion prediction. Physics in Medicine and Biology 58(11), 3911–3929 (2013)CrossRefGoogle Scholar
  6. 6.
    Ernst, F., Schlaefer, A., Schweikard, A.: Prediction of Respiratory Motion with Wavelet-Based Multiscale Autoregression. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 668–675. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research 1, 211–244 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Dürichen
    • 1
    • 2
  • Tobias Wissel
    • 1
    • 2
  • Floris Ernst
    • 1
  • Achim Schweikard
    • 1
  1. 1.Institute of Robotics and Cognitive SystemsUniversity of LübeckGermany
  2. 2.Graduate School for Computing in Medicine and Life SciencesLübeckGermany

Personalised recommendations