Evolution of Dendritic Morphologies Using Deterministic and Nondeterministic Genotype to Phenotype Mapping

  • Parimala Alva
  • Giseli de Sousa
  • Ben Torben-Nielsen
  • Reinoud Maex
  • Rod Adams
  • Neil Davey
  • Volker Steuber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8131)

Abstract

In this study, two morphological representations in the genotype, a deterministic and a nondeterministic representation, are compared when evolving a neuronal morphology for a pattern recognition task. The deterministic approach represents the dendritic morphology explicitly as a set of partitions in the genotype which can give rise to a single phenotype. The nondeterministic method used in this study encodes only the branching probability in the genotype which can produce multiple phenotypes. The main result is that the nondeterministic method instigates the selection of more symmetric dendritic morphologies which was not observed in the deterministic method.

Keywords

pattern recognition evolutionary algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torben-Nielsen, B., Stiefel, K.M.: An inverse approach for elucidating dendritic function. Front. Comput. Neurosci. 4, 128 (2010)CrossRefGoogle Scholar
  2. 2.
    de Sousa, G., Maex, R., Adams, R., Davey, N., Steuber, V.: Evolving dendritic morphology and parameters in biologically realistic model neurons for pattern recognition. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 355–362. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    van Pelt, J., Verwer, R.: Growth models (including terminal and segmental branching) for topological binary trees. Bull. Math. Biol. 47, 323–326 (1985)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    van Pelt, J., Uylings, H.B., Verwer, R.W., Pentney, R.J., Woldenberg, M.J.: Tree asymmetry–A sensitive and practical measure for binary topological trees. Bull. Math. Biol. 54, 759–784 (1992)CrossRefMATHGoogle Scholar
  5. 5.
    Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008)CrossRefGoogle Scholar
  6. 6.
    Carnevale, N.T., Hines, M.L.: The NEURON Book. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  7. 7.
    Vetter, P., Roth, A., Häusser, M.: Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. J. Neurophysiol. 85, 926–937 (2001)Google Scholar
  8. 8.
    Steuber, V., De Schutter, E.: Long-term depression and recognition of parallel fibre patterns in a multi-compartmental model of a cerebellar Purkinje cell. Neurocomputing 38-40, 383–388 (2001)CrossRefGoogle Scholar
  9. 9.
    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Parimala Alva
    • 1
  • Giseli de Sousa
    • 1
    • 2
  • Ben Torben-Nielsen
    • 3
  • Reinoud Maex
    • 4
  • Rod Adams
    • 1
  • Neil Davey
    • 1
  • Volker Steuber
    • 1
  1. 1.STRIUniversity of HertfordshireHatfieldUK
  2. 2.Federal University of Santa CatarinaBrazil
  3. 3.École Polytechnique Fédérale de LausanneSwitzerland
  4. 4.École Normale SupérieureFrance

Personalised recommendations